New Frontiers:
The Origins and Content of New Work, 1940-2018*

David Autor Caroline Chin Anna Salomons
MIT € NBER MIT Utrecht University € 1ZA

Bryan Seegmiller

Northwestern University Kellogg School
August 14, 2022

Abstract

We address three core questions about the hypothesized role of newly emerging job
categories (‘new work’) in counterbalancing the erosive effect of task-displacing au-
tomation on labor demand: what is the substantive content of new work; where does it
come from; and what effect does it have on labor demand? To address these questions,
we construct a novel database spanning eight decades of new job titles linked both
to US Census microdata and to patent-based measures of occupations’ exposure to
labor-augmenting and labor-automating innovations. We find, first, that the majority
of current employment is in new job specialties introduced after 1940, but the locus
of new work creation has shifted—from middle-paid production and clerical occupa-
tions over 1940-1980, to high-paid professional and, secondarily, low-paid services since
1980. Second, new work emerges in response to technological innovations that comple-
ment the outputs of occupations and demand shocks that raise occupational demand;
conversely, innovations that automate tasks or reduce occupational demand slow new
work emergence. Third, although flows of augmentation and automation innovations
are positively correlated across occupations, the former boosts occupational labor de-
mand while the latter depresses it. Harnessing shocks to the flow of augmentation and
automation innovations spurred by breakthrough innovations two decades earlier, we
establish that the effects of augmentation and automation innovations on new work
emergence and occupational labor demand are causal. Finally, our results suggest that
the demand-eroding effects of automation innovations have intensified in the last four
decades while the demand-increasing effects of augmentation innovations have not.
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1 Introduction

A burgeoning economic literature analyzes how rapidly evolving digital technologies — in-
formation and communications technologies, artificial intelligence, robotics — affect em-
ployment, skill demands, and earnings levels. Focusing on the substitution of machines for
workers in tasks where automation has rising comparative advantage, this work anticipates
and interprets the decline of middle-skill employment in high income countries (aka, job po-
larization) and attendant impacts on wage structure, documents the concentrated impact of
industrial robotics on labor demand in heavy manufacturing industries and in manufacturing-
intensive communities, and explores how artificial intelligence may change the structure of
occupations.

This work is however comparatively silent—with key exceptions, discussed below—on
the flip side of the ledger: the augmentation of human labor and the generation of new work
activities that demand this labor. Indeed, research on the impact of technological change on
employment has primarily treated the set of human job tasks as finite and static, meaning
that as automation proceeds, labor is shunted into an ever-narrowing scope of activities,
as in Susskind (2020). But casual observation and historical evidence suggest the opposite:
even as employment in labor-intensive sectors such as agriculture, textiles, and mining has
eroded, the scope and variety of labor-demanding activities has arguably expanded, e.g., in
medicine, software, electronics, healthcare, finance, entertainment, recreation, personal care,
and other domains—a phenomenon that Acemoglu and Restrepo (2019) refer to as labor
reinstatement.

Though no economic historian would dismiss the importance of new work creation, formal
analysis of this topic has likely lagged in part because technology-labor complementarity is a
residual force in the widely-applied ‘task framework’ (Autor et al., 2003; Acemoglu and Au-

tor, 2011) and more generally in standard models of capital-labor complementarity (Krusell

1On task displacement, job polarization, and wage structure, see Autor et al. (2003), Autor et al. (2006),
Goos and Manning (2007), Goos et al. (2009), Acemoglu and Autor (2011), Autor and Dorn (2013), Goos
et al. (2014) Michaels et al. (2014), Akerman et al. (2015), Arntz et al. (2017), Bardny and Siegel (2018),
Dillender and Forsythe (2019), Cortes et al. (2020), Acemoglu and Restrepo (2021), Harrigan et al. (2021),
and Bohm et al. (2022). On industrial robotics, see Chiacchio et al. (2018), Graetz and Michaels (2018),
Humlum (2019), Acemoglu and Restrepo (2020); Acemoglu et al. (2020), Bonfiglioli et al. (2020), De Vries
et al. (2020), Faber (2020), and Dauth et al. (2021); and see Bessen et al. (2022) on automation more
broadly. On the potential impact of artificial intelligence, see Brynjolfsson et al. (2018), Felten et al.
(2018b, 2019), Alekseeva et al. (2020), Babina et al. (2020), Grennan and Michaely (2020), Webb (2020),
and Acemoglu et al. (2021). Recent work exploring the complementarity between capital investment and
labor demand includes Curtis et al. (2021); Aghion et al. (2022); Hirvonen et al. (2022).



et al., 2000). In such models, tasks that are not substituted are implicitly complemented,
which provides little conceptual or empirical guidance for exploring this complementarity in
practice. Recent work by Acemoglu and Restrepo advances the theoretical frontier on this
topic (Acemoglu and Restrepo, 2018, 2019), but a major empirical challenge remains: while
it is relatively straightforward to quantify the set of job tasks and encompassing occupations
that are substituted by automation, there is almost no direct measurement of either the
emergence of new work tasks within occupations and industries, or of the technological and
economic forces that are hypothesized to give rise to them.

This paper systematically studies the nature, sources, and consequences of the emergence
of new work in the United States between 1940 and 2018, building on path-breaking empirical
work by Lin (2011) and theoretical work by Acemoglu and Restrepo (2018). We seek to
consistently measure the substantive content of new work over eight decades, to explore the
forces that explain when and where new work emerges, and to assess whether, as hypothesized
in recent literature, new work exerts a countervailing force to the employment-eroding effects
of task-displacing automation.

Our analysis is grounded in three constructs that we operationalize using purpose-built
data. The first is new work itself, by which we mean the introduction of new job tasks or
job categories requiring specialized human expertise. Building on Lin (2011), we construct a
database of new job tasks introduced during the period of 1940 through 2018. This database
is sourced from nearly a century of internal reference volumes developed and used by U.S.
Census Bureau employees to classify the free-text job descriptions of Census respondents into
occupation and industry categories in each decade. While Census tabulations and public use
data sources report several hundred distinct occupation and industry codes in each Census
year (which we call ‘macro-titles’), these titles reflect concatenations of approximately 30,000
occupational and 20,000 industry-level ‘micro-titles’ enumerated in the Census Alphabetical
Index of Occupations and Industries (CAI hereafter) in each decade between 1930 and 2018
(US Census Bureau). Critically, these indexes are updated during the processing of each
decade’s Census to reflect new write-in titles detected by Census coders. Concretely, new
titles are added when a sufficient number of Census respondents report performing a specific,
previously unseen or uncommon activity as their primary occupation. By comparing succes-
sive editions of the Census Alphabetical index, we are therefore able to track the emergence
of new micro-titles across decades.

Consider, for example, the micro-titles of “Technician, fingernail” (added in CAT 2000)
and “Solar photovoltaic electrician” (added in CAI 2018), which highlight two salient at-



tributes of new work as captured by the CAIL First, new work typically requires ezpertise
acquired through study, apprenticeship, or practical experience (e.g., in cosmetology, in the
electrical trades), though the extent of expertise clearly varies across categories. Second, new
work is not usually fundamentally different from prior work—solar photovoltaic electricians
are electricians with expertise in solar installations, and fingernail technicians are beauticians
who specialize in nail care. Rather, the emergence of new work categories typically reflects
the development of novel expertise within existing work activities (e.g., electrical trades skills
specific to solar installations) or an increase in the market scale of a niche activity (e.g., nail
care). We demonstrate below the external validity of the CAl-based new work measure
by verifying with Google Ngram Viewer data (Michel et al., 2011) that the CAI generally
captures new job titles in each decade as they gain common usage in the English language.

The second and third constructs that we empirically operationalize are the flow of aug-
mentation and automation innovations over eight decades. In our terminology, augmentation
innovations are technologies that increase the capabilities, quality, variety, or utility of the
outputs of occupations, potentially generating new demands for worker expertise and special-
ization.? Conversely, automation innovations are technologies that substitute for the labor
inputs of occupations, potentially replacing workers performing these tasks. We construct
both augmentation and automation measures using natural language processing (NLP) tools
to map the full text of all U.S. utility patents issued between 1940 and 2018 to the domain
of occupations. Following methods introduced by Kogan et al. (2021), we represent both
patent documents and occupational descriptions (discussed next) as weighted averages of
word embeddings, which are geometric representations of word meanings. We are able to
characterize the semantic closeness between patent texts and occupational descriptions by
measuring their proximity in embedding space.

We classify patents as augmentation and automation innovations, recognizing that any
given patent can be both or neither. To capture augmentation innovations, we harness
the set of micro-titles in the CAI associated with each macro-occupation in each decade
to provide a text corpus describing the occupation’s outputs.® This procedure identifies
innovations that are aligned with occupational outputs, as measured by textual similar-
ity. For example, in 1999, the U.S. Patent and Trademark Office (USPTO) granted patent

2Acemoglu and Restrepo (2018) refer to innovations that create new worker tasks as ‘task reinstatement’
We believe that the term augmentation better corresponds to the empirical measure we develop here.

3For this exercise, we use all micro-titles present for an occupation in a decade, not just the new titles
emerging in that decade.



US5924427A for a “Method of strengthening and repairing fingernails”. Our algorithm links
this patent to the Census macro-occupation of “Miscellaneous personal appearance work-
ers,” which encompasses the micro-title of “Technician, fingernail”. Similarly, our algorithm
links the 2014 patent US7605498B2 “Systems for highly efficient solar power conversion” to
the macro-occupation “Electrical and electronics engineers” which includes the micro-title
“Solar photovoltaic electrician”.

To capture automation innovations, we follow Webb (2020), Dechezleprétre et al. (2021),
Kogan et al. (2021), and Mann and Piittmann (2021) in identifying similarities between the
content of patents and the tasks that workers perform in specific occupations. To provide a
representative and highly detailed measure of occupational tasks for the full eight decades
of our analysis, we employ the 1939 Dictionary of Occupational Titles (DOT, hereafter) for
the 1940-1980 period, and the 1977 DOT for the 1980-2018 period (U. S. Department of
Labor, Employment and Training Administration, 1939, 1977). We again use the full corpus
of utility patents issued between 1940 and 2018 to detect overlaps between innovations and
occupational tasks. For example, in 1979, the USPTO granted patent US4141082A for a
“Wash-and-wear coat”. Our algorithm links this patent to the macro-occupation of “Laundry
and dry cleaning workers”. Similarly, our algorithm links the 1976 patent US3938435A, “Au-
tomatic mail processing apparatus”, to the macro-occupation of “Mail and paper handlers.”

It deserves emphasis that the procedures we use to identify augmentation and automation
innovations are fully parallel, including processing of patents, harnessing of word embeddings,
and selection and weighting of matched patents. The only difference between the procedures
for identifying augmentation versus automation innovations is the corpora of text that are
used to characterize occupational content, i.e., the CAI for occupational outputs and the
DOT for occupational task inputs.

To frame and structure our analysis, we formalize our main hypotheses in a stylized two-
sector general equilibrium task model, building on Acemoglu and Restrepo (2018), which
draws economic linkages between new task creation, task automation, incentives for innova-
tion, and the locus and attendant skill demands of new work. We posit that new job tasks
(i.e., new work) derive from two primary sources. One is augmentation innovations, meaning
the introduction of new processes and products (e.g., solar voltaic cells), new services (e.g.,
fingernail hardening), and entirely new products or industries (e.g., dry-cleaning, commercial
air travel), that create new demands for expert knowledge and specific competencies that
correspond to new work tasks and are reified in new job titles in our empirical analysis. A

second source of new task creation is fluctuations in market size—stemming for example



from trade or demographic shifts—that increase or depress the value of occupational out-
puts. Even absent specific technological advances, the model implies that positive demand
shocks catalyze the introduction of new services and specialties, spurring the emergence of
new titles, and conversely, that inward shifts in the demand for an occupation’s services slow
the emergence of new occupational titles.

Following Acemoglu and Restrepo (2018), we consider how the flow of innovations may
respond endogenously to demand forces. In the model, positive demand shifts raise the
value of occupational outputs. This creates incentives for entrepreneurs to introduce both
augmentation innovations requiring new labor-using tasks, and automation innovations that
displace existing labor-using tasks. The model therefore predicts that the flow of augmenta-
tion and automation patents will be positively correlated at the occupation level. But there
is an important distinction: since augmentation innovations create new tasks for workers,
they should predict the arrival of new job titles; conversely, since automation innovations
create new tasks for machines rather than workers, these innovations should not predict the
arrival of new job titles.

While the implications above concern the introduction of new job tasks as reflected in job
titles, the key testable implication of the model concerns the impact of augmentation and au-
tomation innovations on occupational employment and occupational wagebills (the product
of employment and wages). Augmentation innovations unambiguously raise occupational
labor demand since these innovations both create new labor-using tasks that reduce (rela-
tive) demand for capital (a substitution effect) and raise the value of occupational services,
yielding a positive scale effect. In the case of automation, these substitution and scale effects
are partly offsetting: automation of labor-using tasks reduces employment via the substitu-
tion effect while the scale effect (stemming from higher productivity) pushes in the opposite
direction (as in Acemoglu and Restrepo 2018). The structure of consumer preferences in
our model, however, guarantees that the substitution effect dominates: automation always
erodes employment in the automating sector. This assumption could readily be relaxed, but
it receives strong empirical support.

Our principal findings are as follows:

1. The majority of current employment is found in new job specialties (‘new work’) in-
troduced after 1940. Over these eight decades, the locus of new work creation has
substantially shifted from middle-paid production and clerical occupations in the first
four post-WWII decades, to high-paid professional and, secondarily, low-paid services
since 1980.



. Augmentation and automation innovations have distinct, asymmetric relationships to
the creation of new work. Augmentation innovations strongly predict the locus of
new task creation, as measured by the emergence of new job titles, across occupations
and over time. Despite their positive cross-occupation correlation with augmentation

innovations, automation innovations do not predict where new work emerges.

. The creation of new work responds elastically to shifts in demand for occupational out-
put. Adverse demand shocks, which we identify using the widely studied China trade
shock (Autor et al., 2016), slow the emergence of new work tasks in exposed occupa-
tions, even conditional on exposure to augmentation innovations and contemporaneous
changes in employment. Conversely, positive occupational demand shocks, which we
identify using shifts in demographic structure following DellaVigna and Pollet (2007),
accelerate the emergence of new work in exposed occupations. These demographic
shifts help account for the emergence of new job types in lower-paid personal services,
which have been relatively immune to labor-augmenting innovations but have never-
theless been a key locus of new work creation for non-college workers over the last four

decades.

. Employment and wagebills grow in occupations exposed to augmentation innovations
and contract in occupations exposed to automation innovations. These countervailing
effects are particularly striking given that augmentation and automation innovation

flows are positively correlated, as the model predicts.

. The model’s comparative static predictions for the relationship between augmentation
and automation innovations, new work creation, and shifts in occupational labor de-
mand hold when innovations arrive exogenously. If, as theory predicts, augmentation
and automation innovations are themselves spurred by occupational demand shifts,
the empirical predictions are not as sharp. To overcome this limitation, we develop
an instrumental variables strategy that identifies shocks to the flow of augmentation
and automation innovations stemming from breakthrough innovations occurring two
decades earlier. Using the resulting downstream patent flows as instruments for ob-
served patent flows, we establish that the hypothesized effects of augmentation and
automation innovations on new work emergence and occupational labor demand are

indeed causal.

. Finally, while the augmentation and automation exposure measures developed here lack

sufficient cardinality to draw definitive conclusions about acceleration or deceleration



over the course of many decades, our results for both employment and new work
emergence suggest that the demand-eroding effects of automation innovations have
intensified in the last four decades while the demand-increasing effects of augmentation

innovations have not.

Our work contributes to three economic literatures. A first studies the interplay between
supply, demand, technologies, and institutions in shaping the long-run evolution of skill
demands, occupational structure, and wage inequality (Goldin and Margo 1992; Katz and
Murphy 1992; DiNardo et al. 1996; Acemoglu 1998; Autor et al. 1998; Katz and Autor
1999; Krusell et al. 2000; Card and Lemieux 2001; Goldin and Katz 2008; Autor et al. 2020;
Haanwinckel 2020). A foundational assumption of this literature is that technological change
has non-neutral impacts on the skill composition of labor demand. We contribute by linking
changes in the structure of occupational demands to the shifting locus of innovation over
eight decades. We show that new work is a quantitatively large contributor to aggregate
employment change, that it emerges where innovative activity is focused, and that the locus
of this new work generation has shifted across recent decades, leading overall changes in
occupational structure.

We also contribute to a contemporary literature that explores how automation tech-
nologies substitute for existing work, as measured by occupational structure or job tasks
(see citations in footnote 1). Our contribution is closely related to papers by Webb (2020),
Dechezleprétre et al. (2021), Mann and Pittmann (2021), and most directly Kogan et al.
(2021), who employ NLP tools to identify innovations recorded in patents that potentially
substitute for the tasks performed by workers, as well as papers by Brynjolfsson and Mitchell
(2017); Brynjolfsson et al. (2018); Felten et al. (2018b, 2019) that predict which occupational
tasks can be performed by artificial intelligence. Distinct from this literature, we addition-
ally develop and validate a method to identify innovations that generate new work tasks by
augmenting occupational outputs.*

Most directly, our paper contributes to research assessing the micro- and macroeconomic
origins of new work, including Goldin and Katz (1998); Lin (2011); Acemoglu and Restrepo
(2018, 2019); Atack et al. (2019); Frey (2019); Atalay et al. (2020), and Deming and Noray

4We also build on the vast literature, originating with Griliches (1981); Jaffe et al. (1993); and Hall et al.
(2001), that exploits patents to study knowledge spillovers, innovation networks, the value of innovation
and its relationship to rent creation, public-private R&D complementarities, and innovation responses to
taxation, among many other topics. See Hall and Harhoff (2012) and Moser (2016) for recent reviews of
(aspects of) this literature.



(2020). Our theoretical model elaborates and extends a static version of the framework
in Acemoglu and Restrepo (2018). Following their approach, we treat task creation and
task automation as endogenous: entrepreneurs supply innovations to either augment workers
(task creation) or substitute labor with capital (task automation) in response to factor prices.
What our setup adds to Acemoglu and Restrepo (2018) is the interplay among two sectors
that differ in their skill intensities. This enables study of the operation of sectoral demand
shifts—stemming from, for example, trade or demographic shocks—that may reshape the
locus of new work creation across occupations and skill groups.

Empirically, we extend the approach to measuring new work pioneered in Lin (2011),
while expanding its scope to provide direct, representative, and time-consistent measure-
ment of new task creation across eight decades.” We leverage these task measures by linking
both new and existing occupational titles to innovations recorded in patents, building on re-
cent work by Mann and Piittmann (2020); Webb (2020); Kogan et al. (2021). Distinct from
these studies—and any others of which we are aware—we identify innovations that comple-
ment occupational outputs, which we hypothesize (and empirically confirm) spur new task
creation, and we empirically distinguish these innovations from automation innovations that
displace labor-using tasks. The ability to distinguish between augmentation and automation
innovations permits us to analyze new task creation and task automation concurrently, and
to show that these forces are positively correlated at the occupational level and yet have
countervailing causal effects on occupational labor demand. Finally, we are able to test
and confirm the countervailing causal effects of augmentation and automation innovations
on new work creation and occupational labor demand by harnessing shocks to the flow of
innovations stemming from breakthrough patents occurring two decades earlier.

The paper proceeds as follows. Section 2 details our methods for identifying new work,
describes how the locus of new work has evolved over 1940-2018, and outlines how we identify
augmentation and automation innovations embodied in patents that link to specific occu-
pations. Section 3 provides an illustrative theoretical model that motivates and guides our
empirical work. Section 4 uses both OLS and instrumental variables methods to test two

foundational assumptions of our model: that output-complementary innovations are associ-

°In related work, Acemoglu and Restrepo (2019) develop a set of ingenious proxies for the appearance
of new work based on changes in labor share and in the mix of 3-digit occupations (what we call ‘macro-
occupations’) within industries. Atalay et al. (2020) and Deming and Noray (2020) measure the appearance
of new work by analyzing the text of job advertisements, while papers by Curtis et al. (2021); Aghion et al.
(2022); and Hirvonen et al. (2022) document that investments in general capital and frontier manufacturing
technologies appear to complement rather than substitute for production laborers.



ated with new work emergence while input-substituting innovations are not. In this section,
we also test whether new task creation responds elastically to negative demand shocks stem-
ming from globalization, and to positive demand shifts stemming from demographic changes.
The final empirical section of the paper, Section 5, assesses whether augmentation and au-
tomation innovations have distinct, countervailing effects on occupational employment and

wagebill growth, as the model implies. Section 6 concludes.

2 Data and Measurement

Our analysis links data on the emergence of new titles, the flow of augmentation and automa-
tion innovations, and the evolution of employment and earnings within industry-occupation
cells over eight decades, 1940-2018. We employ four primary data sets. A first is the IPUMS
Census samples for decades 1940 through 2000 and Census ACS samples for 2014-2018 (Rug-
gles et al., 2022), which provide data on employment and earnings within detailed occupation
and industry cells. Our three other core data sources—new titles, augmentation flows, and

automation flows—are purpose-built for this study, and we document them here.

2.1 Measuring new work

We leverage Census Bureau historical coding volumes for occupations and industries for the
years 1930 through 2018 (industry data starts in 1940) that are released each decade by
the Census Bureau as the Census Alphabetical Index of Occupations and Industries. Each
Index contains approximately 35,000 occupation and 15,000 industry ‘micro’ titles in each
year, each classified to a more aggregated (‘macro’) Census occupation or industry code. As
noted in the Introduction, these indexes serve as reference documents for Census coders who
classify individual Census write-ins for job title and industry of employment, which are always
reported as free text fields. This process has been performed consistently for occupations
since 1900 and is illustrated for occupations in the American Community Survey (ACS) in
Figure A5.

When Census coders encounter multiple instances of a write-in occupational title that
cannot be ascribed to an existing micro-title, they bring it to the attention of Census bu-
reau managers, who perform an internal review to determine whether the title is not so
esoteric (or idiosyncratic) as to be irrelevant to the U.S. working population. Titles that

clear this bar are added to the Index. For example, the micro occupation title “Artificial



Intelligence Specialist” was added to the CAI in 2000 and classified to the broader Census
(‘macro’) occupational title “Computer Scientists and Systems Analysts”, which appears in
published Census tabulations and public use data sets. The two stage process for adding
a new title—detection by coders, review by managers—clarifies why, for example, Mental-
Health Counselor was added in 1970, Artificial Intelligence Specialist in 2000, and Sommelier
in 2010. Although there were certainly workers performing these job types in earlier decades,
the particular specialization was too rare to warrant inclusion beyond a generic counselor,
computer science, or restaurant server title.

The Census Bureau does not highlight or separately list newly-added titles, and coding
volumes are revised for other reasons, such as renaming outdated job descriptions, adding
differently phrased variants of the same title, or removing gendered forms. Hence, to identify
the flow of new titles added to the CAI, we compare title lists across decades using fuzzy
matching combined with extensive manual revision of ‘candidate-new’ titles, discarding false
positives that emerge from, for example, rewording, reformatting of the index, or other newly
added titles which do not reflect a discernible modification to their preexisting counterparts.®
Our overarching aim is to retain newly added titles that reflect plausibly new work activities,
meaning that they add a particular task specialization, work method or tool, or professional
or educational requirement (Appendix C.1 provides details.) For example, “Clinical Psy-
chologist” is new in 1950 because it it is a specialization of the title of “Psychologist”, which
was already present in 1940.

Table 1 provides examples to illustrate the diversity of micro-titles added to the CAI
in each decade from 1940 through 2018 (where, for example, new titles in the 1950 CAI
reflect those detected by Census staff between 1940 and 1950.) The left-hand column of
the table reports titles that are associated with new or evolving technologies: Airplane
designers in 1950, Engineers of computer applications in 1970, Circuit layout designers in
1990, and Technicians of wind turbines in 2010. Many new titles do not have immediate
technological origins, however. As shown in the right-hand column of Table 1, these titles
appear to reflect changing tastes, income levels, and demographics, including Tattooers in
1950, Hypnotherapists in 1980, Conference planners in 1990, and Drama therapists in 2018.
These examples motivate looking beyond exclusively technological forces, as we do below, in

analyzing the sources of new work creation.

6We do not, for instance, count “Software Applications Developer” as a new micro-occupation since “Software
Developer” was already present when it was added. The Census Bureau also does not systematically remove
extinct titles from the index, as these titles may be useful for classifying uncommon write-ins.
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How representative of new work is the CAl-based measure? Since we know of no com-
parable source against which to benchmark it, we provide an alternative test of external
validity: we verify that our measure captures new occupational titles as they enter common
usage in the English language, as captured by the Google Ngram Viewer (Michel et al.,
2011). Specifically, using the Google Ngram viewer, we calculate the median relative-usage
frequency in digitized English language books of new versus preexisting occupational titles
drawn from each edition of the CAI from 1940 to 2018. We then compare the usage frequency
of these titles in the English language over 1900-2018 with their decade of entry into the
CAL" These comparisons are reported in Figure 1, where each panel in the figure displays
the usage frequency of all titles added to the CAI in the corresponding decade relative to
those present at the start of the decade. Frequencies are normalized as the ratio of instances
of the new title (of length n) in a year (excluding unmatched titles) relative to the total
number of n-grams in that year.

Figure 1 supports the hypothesis that the CAI captures the zeitgeist of emerging occupa-
tional titles as they are reflected in common English usage: in each cohort of new titles, the
median new title is added to the CAI in approximately the decade it attains peak usage in
the English language (relative to preexisting titles), or slightly before; and in no cohort does
the CAI capture the median new title after its attaining peak usage. In Appendix Figure
A1, we corroborate that this pattern holds across four broad occupational categories that
encompass the totality of employment: blue collar occupations; professional and information
occupations; personal service occupations; and business service occupations. (Appendix B
details these occupational groups.) These findings increase confidence that our database
built from successive CAI editions provides a representative, time-consistent measure of the

emergence of new job titles in the U.S over the eight decades of our sample.

2.2 New work descriptive statistics

Using the time-consistent new work measure, we next report estimates of the number of
people employed in new work (i.e., new titles) in each decade, both overall and by broad
occupation and education group. Because the Census Bureau does not record the count of
respondents within micro-titles (recall that the CAI is intended as a coding aid rather than a

survey instrument), we combine new title count measures with Census and ACS representa-

"We thank Peter Lambert of LSE for suggesting this analysis.
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tive employment data to form estimates. Following Lin (2011), we approximate employment
in new work by multiplying the new title share in each macro-Census occupation—equal to
the ratio of new micro-titles to total micro-titles within a Census occupation—by total em-
ployment in the occupation.® Using a similar approach, we estimate the average educational
attainment of workers employed in new titles by taking the average of educational attainment
of all workers in their macro occupation-by-industry cell and weighting across all macro-titles
to aggregate to broader occupation categories (where using respondents’ macro-occupation
and macro-industry to assign characteristics increases the specificity of the imputation).
The occupational distribution of new work has changed markedly over the past eight
decades, mirroring the changing shape of employment growth and skill demands during this
period. Our estimates imply that the majority of contemporary work (as of 2018) is found in
new job titles added since 1940, as shown in Figure 2. This figure reports the distribution of
employment in 1940 and 2018 in twelve exhaustive, mutually exclusive broad occupational
categories ordered from lowest to highest-paying, with farming and mining occupations on
the left-hand side of the scale and managerial workers on the right-hand side. In the second
set of bars (those for 2018), we further distinguish between 2018 employment found in
occupational titles that existed in 1940 versus 2018 employment in occupational titles that
were added thereafter (i.e., new tasks). Here, employment in new titles is estimated by
constructing a cumulative new title share in each broad occupation—summing the number
of new titles added over 1940-2018—and dividing this by the total number titles in the 2018
index adjusted for (the small number of) titles that were removed. (Details are reported
in Appendix C.2.) Roughly 60% of employment in 2018 is found in job titles that did not
exist in 1940. Among professionals—the occupational category that added the most workers
during these eight decades—this share is 74 percent. Conversely, less than half (46 percent)
of employment in production occupations in 2018 is found in job categories that were not
present in 1940. Production had the second lowest employment growth out of these broad
occupational categories during the past eight decades (with the lowest being Farming).
Figure 3 assesses the educational skew of new work by plotting the contrast between the

flow of new work and the stock of preexisting work during 1940-1980 and 19802018, compar-

8Lin (2011) provides validation for this approach using a special version of the April 1971 Current Population
Survey where a subsample of workers are assigned DOT titles. We have further explored the validity of this
imputation using Census Complete Count data for 1940, which contains both macro-titles and the free text
write-in micro-titles supplied by Census respondents. We estimate that the count of workers in new titles
is strongly increasing in the new title share—though the slope is below one—and that this relationship is
more precise when using ordinal share ranks rather than cardinal shares. Details are given in Appendix I.
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ing these patterns for workers with a high school degree or lower education (‘non-college edu-
cated’) and those with at least some college education (‘college educated’).” During the first
half of the sample, there are only modest differences between the occupational distributions
of the flow of new work and the stock of existing work. By implication, the flow of new work
largely replicated the stock of existing work in these decades: Appendix Figure A2 shows
that middle-paid production and clerical and administrative occupations were receiving large
shares of new work in this era for both education groups, but especially for non-college work-
ers. The subsequent four decades reveal a marked contrast. For both college (some college
or above) and non-college workers (high school or below), there is a sharp decline in the
flow of new work relative to the stock of existing work in traditional middle-skill, middle-pay
occupations, including construction, transportation, production, and clerical and adminis-
trative support.! This pattern is consistent with the widely documented phenomenon of
‘occupational polarization’ unfolding in these decades (Autor et al., 2006; Goos and Man-
ning, 2007; Autor and Dorn, 2013; Goos et al., 2014; Michaels et al., 2014; Autor, 2019).
The shape of polarization is, however, distinct for college and non-college workers. Among
college-educated workers, the entirety of the decline in middle-skill occupations is accounted
for by a corresponding rise in employment in professional occupations. Among non-college
workers, however, most of the middle-skill decline is absorbed a sharp increase in low-paid
personal and health service occupations, accompanied by a modest increase in employment
in professional occupations.

These descriptive figures offer two insights: First, the emergence of new work over the
last four decades has led the overall polarization of occupational structure—that is, the flow
of new non-college work has shifted more rapidly than has the stock of existing work to-
wards traditionally low-pay personal service and health-aide occupations at the expensive
of middle-pay blue-collar and administrative jobs. Second, and by implication, employment
polarization does not merely reflect an erosion of employment in existing middle-skill work
but also a change in the locus of new work creation. As the emergence of new specialties of

non-college work has slowed in middle-paid occupations and accelerated in low-paid occupa-

9We calculate the occupational employment of each education group across all Census macro-occupations
(approximately 300) in each decade, and allocate employment within each macro-occupation into new and
preexisting work in proportion to the share of titles in that occupation that are newly emergent in that
decade.

10 Appendix Figure A2 show the same pattern for the overall flow of new work, without contrasting with the
stock of existing work.
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tions, the allocation of non-college workers across occupations has tracked the shifting locus

of new work emergence.

2.3 Measuring augmentation and automation innovations

Our next empirical task is to measure the exposure of occupations to innovations that we
hypothesize complement worker outputs (augmentation) or substitute for worker inputs (au-
tomation). Following a large literature, we measure innovation using patent data. Our
sample includes all utility patents issued by the United States between 1920-2018. Patent
text were obtained by Kelly et al. (2021) from the USPTO patent search website for patents
issued from 1976-2015, and from Google Patents prior to 1976. We extend the Kelly et al.
(2021) sample of patents issued from 2015 to 2018 by scraping the patent text from the
Google Patents website. We also scrape Google Patents for the issue date and primary
three-digit Cooperative Patent Code (CPC) for each patent in our sample. To link these
data to their relevant occupations and industries, we use the entire text of each patent.
(Prior to 1976, each patent document comprised a single block of text. Subsequently, patent
texts were divided into abstract, description, and claims sections.)

We link patent texts to two text corpora to identify two distinct dimensions of innova-
tion as they relate to occupations. To identify innovations that complement the output of
occupations, we use the tens of thousands of occupational and industry micro-titles sup-
plied by each decade’s CAI as a textual corpus characterizing each macro occupation and
industry. We refer to these output-complementary patents as augmentation innovations. To
identify innovations that substitute for the inputs of occupations, we use the Dictionary of
Occupational Titles, DOT hereafter (U. S. Department of Labor, Employment and Training
Administration, 1939, 1977), which describes the tasks accomplished by each occupation.!!
We refer to these input-replacing patents as automation innovations. The key distinction
between the CAI and DOT is that the titles comprising the former primarily describe what
an occupation or industry produces (final outputs), while the latter details the quotidian
activities that a worker in that job performs (task inputs). We expect that patents linked
to occupational titles reflect the presence of technologies that increase the capabilities, qual-
ity, variety, or utility of the outputs of occupations, potentially generating new demands for

worker expertise and specialization. This is in contrast to patents that overlap with the

1To avoid capturing occupational outputs, we use only task descriptions from the DOT, purging any occu-
pational titles contained in these descriptions.
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occupational tasks performed by workers, where we expect to capture technologies that may
replace workers in these tasks. Indeed, evidence indicates that task overlap predicts declines
in labor demand (Webb, 2020; Kogan et al., 2021).

Our approach for linking patents to occupations takes inspiration from Kogan et al.
(2021), whom we follow in using geometric representations of word meanings (word em-
beddings) to measure textual similarity. Figure 4 provides a schematic overview of this
procedure, which we detail in Appendix D.!? Distinct from conventional measures of text
similarity (e.g., the commonly used bag of words approached outlined by Gentzkow et al.
2019), word embeddings locate words with related meanings close together in embedding
space. For example, the verbs research and quantify are not synonymous, nor do they have
common etymology, but each is among the three closest relatives of the other in English
language embedding space.!® Leveraging embeddings to account for conceptual similarities
among words is crucial since patent texts and occupational descriptions often use dissimilar
terms for related concepts (e.g., “research” and “quantify”). We stress that our procedure
for linking these two data sources (CAI and DOT) to patent texts is symmetric and places
no structure on the semantic content of the source documents. The degree to which these
exercises identify different sets of patents with distinct economic content (i.e., augmentation
versus automation) is entirely attributable to differences in the text corpora used to identify
relevant patents. The success of our measures therefore hinges on whether these different
document sources (and their textual overlap with patent descriptions) contain independent
signals regarding labor demand. In sections 4 and 5 we find empirical evidence that these
text-based labor augmentation and automation measures do capture technology-induced

outward and inward shifts in labor demand, respectively.

12Briefly, the procedure is to clean each patent, CAI, and DOT text document by removing prepositions
and other stop words; represent each document as a TF-IDF weighted average of the word embeddings for
each of the words in the document; calculate the matrix of cosine similarity scores among the document
vectors for each patent issued in a decade and the CAI and DOT document vector for each occupation
(DOT) and occupation-by-industry (CAI) cell; retain the top 15% most similar patent-occupation (DOT)
and patent-industry-occupation (CAI) matches in a decade; sum the weighted count of top 15% matched
patents for each occupation-decade (or occupation-industry-decade), with weights equal to each patent’s
cohort-specific relative citation frequency. When estimating occupation-level models, we establish patent
linkages to CAI occupation titles alone; and when estimating occupation-by-industry models, we addi-
tionally leverage CAI industry titles to establish patent matches. Unlike the CAI, the DOT only has
occupation-level textual information. Consequently, the automation exposure measures are always defined
at the occupation level.

13Calculated using http://vectors.nlpl.eu/explore/embeddings/en/associates/# on the English Wikipedia
corpus with queries research VERB and quantify_VERB on 2022/06/24.
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2.4 Contrasting automation with augmentation

Figure 5 previews the substantive content of the automation and augmentation exposure
measures by plotting the bivariate relationship between percentiles of each at the level of
consistent three-digit (‘macro’) occupations over 1940-1980 (166 occupations) and 1980-
2018 (306 occupations), where the occupation-level augmentation and automation exposure
are averaged within each of the two four-decade periods.'* Occupations that are exposed to
more augmentation are also more exposed to more automation. The employment-weighted
cross-occupation correlation between augmentation and automation exposure is 0.67 over
19802018 and 0.58 over 1940-1980. This positive correlation is logical as many technologies
contain both automation and non-automation components. (Indeed, 60 percent of the total
occupation-linkages of patents to Alphabetical Index occupation titles are also linked based
on occupational task content.) It is also consistent with our theoretical framework, which
highlights that demand forces that raise the value of occupational output create incentives
for the introduction of both augmentation and automation innovations.

Alongside the strong positive correlation between occupational exposure to augmentation
and automation innovations, the off-diagonal occupations are instructive. Over 19802018,
the occupations of radiologic technologists and technicians, cabinetmakers and bench car-
penters, and machinists all had high rates of automation relative to augmentation exposure.
The same applies to compositors and typesetters, elevator operators, and telegraph operators
in the prior four decades of 1940-1980. Our conceptual framework predicts that employment
in these occupations would tend to erode. Conversely, augmentation outpaced automation
between 1980 and 2018 in the occupations of industrial engineers, operations and systems
researchers and analysts, and (to a lesser degree) managers and specialists in marketing,
advertising, and PR, and business and promotion agents. In the prior four decades, ship-
ping and receiving clerks, buyers and department heads, civil and aeronautical engineers,
and, to a lesser extent, bookkeepers were all more exposed to augmentation than automa-
tion. We would expect these occupations to expand in these subperiods. Conversely, the
on-diagonal examples capture occupations with a relatively ‘balanced’ degree of exposure to
both automation and augmentation, either because they are highly subject to both forces

(e.g., assemblers of electrical equipment over 1980-2018 and office machine operators over

4Because it is infeasible to construct a fully balanced panel of detailed occupations over the eight decades
of 1940-2018 without sacrificing substantial resolution, we instead create two balanced panels that cover
the first and second halves of our sample. Appendix B provides details. Descriptive statistics on these
augmentation and automation exposure measures are provided in Appendix Table Al.
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1940-1980) or because they are relatively insulated from both (e.g., clergy and religious
workers in both periods).

Inspection of patents that are augmenting for one occupation but automating for an-
other reveals further logical relationships. For example, patents issued between 2010-2018
that are augmentation-linked to computer systems analysts & computer scientists are most
often automation-linked to occupations in technicians or clerical & administrative support—
occupations which are particularly susceptible to software-based automation during this pe-
riod of rapid digital growth. Appendix Table A3 enumerates examples of individual patents
that are augmenting for computer systems analysts & computer scientists yet automating
for other occupations. Example patents include “Method and apparatus for storing confi-
dential information”, which is automation-linked to billing clerks & related financial records
processing; “Direct connectivity system for healthcare administrative transactions”, which is
automation-linked to health record technologists & technicians; and “System and method for
securing data”, which is automation-linked to office machine operators, n.e.c., computer and
peripheral equipment operators, and other telecom operators. We expect that technologies
developed in these patents can be harnessed by computer scientists to automate tasks in

linked occupations.

3 Theoretical Framework

To formalize intuitions that guide the empirical analysis, we write down a model that consid-
ers how three forces shape the endogenous creation of new job tasks, the elimination of old
tasks, and the demand for labor at the level of occupations. These three forces are augmenta-
tion, which generates new labor-using job tasks; automation, which reallocates existing tasks
from labor to capital; and shifts in consumer demand, which affect task automation and new
task creation by changing innovation incentives. Our framework generalizes the single-sector
setting in Acemoglu and Restrepo (2018) to two sectors with different skill-intensities, serving
two purposes. First, it allows us to consider the implications of augmentation and automa-
tion for occupational demand (where sectors represent occupations) rather than exclusively
aggregate labor demand. Second, the interaction of these sectors is central for considering the
impact of demands shifts on new work creation. This model provides predictions about the
effects of augmentation and automation innovations on the creation of new work, reflected
in new job titles; the effect of occupational demand shifts on the locus of new work creation;

the correlation between augmentation and automation innovations across occupations; and
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impact of augmentation and automation innovations on occupational labor demand. We
derive these predictions as comparative statics, which we test as causal relationships in the
subsequent empirical sections.

We present the model succinctly here, with a detailed exposition given in Appendix H.1

and proofs in Appendix H.2.

3.1 Environment and equilibrium

We consider an economy with two sectors j € {U, S} producing skill-intensive and skill-non-
intensive goods or services, Yg and Y. A representative household consumes goods Yy, and

Ys according to:
U(YU7YS) = YL[;YS%_Bv (1)

where 8 € (0,1). We will later allow for exogenous changes in preferences () that shift
demand for skill non-intensive vs. skill-intensive services.
Each sector produces a unique final output by combining a unit measure of tasks ¢ €
[N, — 1N} ,
N; ne=1 | 77T
v L woa] )

N;j—1
where y;(7) is the output of task i in sector j; o is the elasticity of substitution between
tasks.
Each task is produced by combining labor composite of high- and low-skill types, n;(7),
or capital, k;(¢), with a task-specific intermediate, ¢;(i). The production function for task i
is given by:
yi (i) = Bjq;(1)k; (i) 7" if i € [N; — 1, 1] 3)
T BNt e (4N
where B; = w;’[l — n]" ™" for notational convenience; the parameter n € (0,1) is the
share of output paid to intermediates; 7;(7) is the productivity of the labor composite n; (i)
(relative to capital); and I; and N; are the equilibrium thresholds for automation and new
task creation, respectively, meaning tasks from N; — 1 to I; are produced by machines and
those from I; to NN, are produced by labor. We assume that ~;(7) is strictly increasing,
implying that labor has strict comparative advantage in tasks with a higher index. In
equilibrium, tasks with lower indices will be automated, while those with higher indices will

be produced with labor.
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Task-specific intermediates ¢;(i) embody the technology used for the production of each
task 7. The automation of an existing task or creation of a new task requires the production
of a corresponding new intermediate. We start by assuming that intermediates are supplied
competitively and can be produced using 1; units of the final good. In section 3.3 we
additionally model endogenous innovation responses.

The measures of high-skill and low-skill labor are given by H > 0 and L > 0, respectively.
Labor is supplied inelastically to the economy as a whole and perfectly elastically across
sectors. The labor composite n;(7) in each sector is a Cobb-Douglas combination of H and
L labor:

n () = 4 (0)™ hy (1) 7. (4)

Both types of labor are used in each sector, but H labor is used more intensively in the
skill-intensive S sector, and L labor is used more intensively in the skill-non-intensive U
sector (0 < ag < ay < 1). Ly, Lg, Hy, and Hg are the equilibrium labor allocations to each
sector, such that Ly+Lgs = L and Hy+ Hg = H. We define a wage index reflecting the price
of the sectoral labor composite, W; = o “ (1 — a; )W’ % where W, and Wy equal
the economy-wide wage for L and H labor, respectively. Finally, capital is sector-specific,
with sectoral capital stocks Ky and Kg taken as given, and R; is the capital rental rate for
sector-specific capital.

We simplify with two additional assumptions. First, we have K; < K j, Where K ; is such

that R; = W(VJVV]'J_) for j € {U, S}. This ensures that the capital rental rate is sufficiently high in

each sector that new tasks will be adopted immediately and will increase aggregate output.

The second assumption is that I} = [; < I j, where tasks 7 < I ; are potentially more cheaply
produced with capital. This assumption implies that the threshold task in each sector is
constrained by the state of automation: when a new automation technology is introduced,
it is always adopted.

With these assumptions we can define a static equilibrium in a similar way to Acemoglu
and Restrepo (2018): Given a range of tasks [N; — 1, N;], automation technology I; €
(N; — 1, Nj], and a capital stock K; for each sector j, a static equilibrium is summarized
by a set of factor prices Wy, Wy, and R;; threshold tasks I and I*; employment levels, L;
and H;; and aggregate output, Y}, for each sector j. Appendix Proposition A1 characterizes

output in the static equilibrium.
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3.2 Innovation and employment

We now consider the consequences of changes in the task structure in each sector, specif-
ically, the effects of task automation and task augmentation, on sectoral employment and
wagebills. Automation occurs when previously labor-using tasks are taken over by capital,
corresponding to a rise in the sectoral automation threshold, I;. Augmentation refers to the
introduction of new labor-using tasks in a sector, corresponding to a rise in N;. In a single-
sector model, the effect of augmentation and automation on labor demand depend solely on
substitution and scale effects in that sector. In our multi-sector setting with labor mobility
and heterogeneous skills, augmentation and automation in either sector affects labor demand

in both sectors, causing sectoral labor reallocation.

Proposition 1 (Employment effects of automation and augmentation) Automation
in sector U (a rise in Iy ) increases the range of sector U tasks produced by capital, which
decreases employment of both high-skill and low-skill workers in that sector. These workers
move to sector S. Augmentation in sector U (a rise in Ny ) has the converse effect: by
introducing new labor-using tasks in sector U, it increases employment of both high-skill and

low-skill workers in that sector, drawing away these workers from sector S. That is,

o v <o, o 0
oLy OHy OLs OHg
ane ong > O ane angy < 0

These derivatives have the opposite sign when augmentation or automation occurs in sector

S.

This proposition, a key testable result of the conceptual framework, reveals the direction
of labor flows in response to automation and augmentation. All else equal, automation in
a sector leads to the contraction of that sector by reducing employment of both types of
workers, whereas augmentation in a sector attracts workers of both types. We directly test
the implication that a sector’s employment rises with sector-specific augmentation and falls
with sector-specific automation in Section 5, where we equate occupations in the empirical
analysis with sectors in the model.

Naturally, changes in sectoral labor demands alter the economy-wide skill premium,

Wy /Wy, as explained in the next corollary.

Corollary 1 (Sectoral innovations and the aggregate skill premium) Automation in

the U sector raises the skill premium, Wy /Wy, by reducing labor demand in the low-skill
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intensive sector. Augmentation in the U sector lowers the skill premium by increasing labor
demand in the low-skill intensive sector. Conversely, automation in the S sector lowers the
skill premium while augmentation in the S sector raises the skill premium. Formally,

oWy /Wr) 0Wu/Wyr)

oWy /W) 0Wru/Wy)
oNy 0 ols T s > 0.

aly  ° ONg

< 0,

This corollary spells out general equilibrium relative wage implications of innovations that
reallocate the distribution of tasks between labor and capital in either sector. Our empir-
ical analysis does not focus on these general equilibrium empirical implications. The next

corollary explains why.

Corollary 2 (Changes in sectoral wagebills by skill group) Due to the law of one price
for skill, the effect of innovation on the log sectoral wagebill of a skill group relative to its
wagebill in the non-innovating sector is identical to its effect on the log relative sectoral

employment of that skill group. Formally:

Oln(WrLy/WrLsg) _ Oln(Ly/Lg) Oln(WrLy/WirLs) _ 0ln(Ly/Lg)
oIy - oIy ’ ONy - ONy

Oln(WgHy /WygHs) _ Oln(Hy/Hg) OIm(WgHy/WigHg) _ 0ln(Hy/Hg)
oIy - oly ? ONy - ONy

and similarly for innovation in the S sector.

This corollary, which echoes Proposition 3 in Hsieh et al. (2019), follows from the mobility
of labor across sectors. In combination with Proposition 1, this corollary provides a testable
implication, which is that the impact of sectoral innovations—which we measure using aug-
mentation and automation patents—on the sectoral wagebill by skill group will mirror those

for sectoral employment. We test this implication in Section 5.

3.3 Shifts in consumer demand and innovation

To consider the interaction between shifts in consumer demand and innovation, we work
with a simple, one-period framework that utilizes the general results above but endogenizes
the supply of intermediates that embody task-specific technologies. At the start of the
period, two state variables determine profit opportunities: factor prices and output. Given
such information, a measure E of entrepreneurs, where F is some large number, chooses
to supply labor to four sector-innovation cells: automation in sector U, new task creation

in sector U, automation in sector S, and new task creation in sector S. We denote the
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number of entrepreneurs in each sector-innovation cell EY, EY, E7Y, and EY., respectively.
In each sector, entrepreneurs generate new intermediates that embody augmentation and
automation technologies according to AIY = EJ and ANJ = E%, where AI/ and ANJ are
realized immediately.

Entrepreneurs have utility given by

Ui = me{l’]{[r]%;zxige{U,S}{w;” + vel, (5)
where U is the (period) utility of entrepreneur z working on innovation m € {I, N} in
sector j € {U, S}. The idiosyncratic preference terms e;’, are independent Type-I Extreme
Value draws with zero mean, and the parameter v scales the variance of these idiosyncratic
terms. Entrepreneurs choose the sector and innovation activity that delivers the highest
utility.

After determining the sectoral value of automating task I (VJI ) and of creating task N
(VjN ), we study how these incentives for automation and new task creation change in sector j
in response to a demand expansion, i.e., an increase in 3 if j = U, or an increase in (1 — 3) if
J = S5. Under the distributional assumptions above, the number of entrepreneurs supplying
labor to each sector-innovation cell has a closed-form analytical expression. Competition
among entrepreneurs to develop intermediates that command monopoly rents implies that

entrepreneurial wages w" are equal to V™, the value of innovation m in sector j.

Proposition 2 A demand shift towards a given sector unambiguously increases new task
creation relative to automation in that sector, while decreasing new task creation relative to

automation in the other sector.

O0ANy > OAIy O0ANy < OAIy

9B B 7 0(1=p) = O(1-p)
0ANs _ 0AIs  0ANs - 0Als
op op > o(1-p) — o(1-p)

This proposition indicates a positive relationship between demand shifts and new task cre-
ation. When there is a positive demand shift in a given sector j, the incentives for new task
creation in that sector increase as a result of movement on two margins: on the demand
side, both output and price increases, and on the factor side, the price of capital increases
more than that of effective labor (since capital supply to each sector is inelastic), increasing

the price differential between the two factors. This increased price differential raises the
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potential returns to new task creation, which assigns tasks from capital to labor.!® Section
4.2 tests an implication of this proposition, which is that outward demand shifts accelerate

new task emergence whereas inward demand shifts decelerate it.

4 The Effects of Innovation and Demand Shifts on New
Work Creation

Following the logic of the model, this section empirically characterizes the forces that explain
where and when new job tasks emerge by relating the emergence of new occupational tasks to
the exposure of occupations to: (a) augmentation innovations; (b) automation innovations;
and (c) positive and negative demand shifts. Our focus here is on forces that affect the
creation of new job tasks, meaning the emergence of new titles. We take up the net effects

of new work creation on occupational labor demand and employment in Section 5.

4.1 Do augmentation innovations spur new work?

In our conceptual framework, economic forces that complement occupational outputs lead
to the demand for new specialties and expertise reflected in new tasks. One of those forces is
augmentation. The first hypothesis that we test is that new job tasks emerge differentially
in occupations that are more exposed to augmentation innovations. Using the flow of new
job titles as a measure of the emergence of new work, we estimate models of the following
form:

100 x THS (Newtitles; ;) = f1AugX,;, + foAutX;; + [3’3% + 6, (+050) + i (6)
where j indexes consistent Census occupations, and ¢ indexes decadal intervals.'® The de-
pendent variable is a measure of the flow of new work titles emerging in a consistent Census
occupation in a decade, and the independent variables of interest are AugX;, and AutXj;,

measuring occupational exposure to augmentation and automation innovations respectively,

15 This result uses the fact that tasks are gross substitutes in each sector, o > 1, so that a change in the
sectoral relative price of capital versus labor increases the profitability of innovations that expand usage
of the factor whose relative price has fallen.

16Because the CAI was largely not updated between 2000 and 2010, and was then substantially updated in
2018, the last time interval of our sample is 2000-2018 rather than 2010-2018.
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as revealed by textual links between patents and the CAI (augmentation) and DOT (au-
tomation). Both the dependent and key independent variables in year ¢ are measured as
cumulative flows over the preceding decade: new work observed in 1950 emerges between
1940 and 1949; similarly, augmentation and automation exposure in 1950 reflects patents
awarded over 1940-1949. Decade fixed effects absorb temporal variation in the total number
of new titles. We control for the employment share of each occupation j at the start of the
decade (E;—10) to remove any mechanical association between new title counts and relative
occupational employment size.!” In some specifications, we further add main effects for the
twelve consistently-defined broad occupational groups, indexed by J, and their interaction
with decade fixed effects.

The outcome measure, the count of new titles in a macro-occupation in a decade, contains
many zeros. To incorporate these observations into the analysis, we use as our dependent
variable the inverse hyperbolic sine (IHS) of new titles and, similarly, use the IHS of the
count of augmentation and automation patents as our explanatory variables. We document
in Appendix Table A4 that our new title results are robust to alternative ways of handling
zeros: transforming the dependent and independent variables into percentile scores; using a
Poisson regression for the count of new titles; and using a dichotomous indicator for non-zero
new titles as the dependent variable.

Based on our conceptual framework, we expect $; > 0: more augmentation-exposed
occupations will add more new titles. The first panel of Table 2 reports estimates of equation
(6) for the full eight decades of the sample. In the first column, which reports a specification
that excludes major occupation-by-decade main effects, the point estimate of 19.76 (4.22)
implies that each 10 percent increment to augmentation exposure predicts an additional
2.0 percent faster rate of new title emergence over the course of a decade. The second
column adds 12 occupation dummies and their interactions with decade effects, thus further
limiting the comparison to new title emergence rates across detailed occupations within broad
occupational categories within each decade. These additional controls absorb significant
additional variation in the outcome variable, as seen from the R-squared values (0.65 in
column 1 versus 0.79 in column 2). The point estimate of 19.36 (2.50) is, however, comparable
to the prior column but more precisely estimated.

Our conceptual model implies distinct relationships between augmentation versus au-

tomation innovations and the flow of new work: augmentation innovations generate new

ITResults are comparable if we instead control for end-of-period employment.
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labor-using tasks, reflected in new titles; automation innovations do not generate such
tasks.!® (We stress that automation innovations should not predict the elimination of ex-
isting job titles since the Census does not prune titles from the CAI as they wane.) The
next columns of Table 2 test this prediction. Column 3 removes the augmentation exposure
variable (AugX) and replaces it with the automation exposure variable (AutX) using the
specification in column 1. Entered independently, the flow of automation innovations also
predicts the flow of new titles, with a point estimate on AutX of 13.41(4.95). This pattern
is to be expected given that automation and augmentation exposures are strongly positively
correlated across occupations (see Figure 5). When however we include both innovation
measures simultaneously in columns 4 and 5, augmentation patents continue to robustly
predict the flow of new titles (f; = 18.79(2.44) in column 5) whereas automation patents
have a small and statistically insignificant relationship with new title flows (52 = 2.85(3.15)
in column 5).

Leveraging the fact that we have distinct occupational panels for the two halves of our
sample, we can probe robustness and stability over two four-decade epochs. These estimates,
reported in panels B and C for 1940-1980 and 19802018 respectively, provide a consistent
picture. In all cases, augmentation patents significantly predict faster arrival rates of new
occupational job titles. Automation patents, by contrast, are either weakly positive or weakly
negative predictors of new title emergence when augmentation patents are simultaneously
included. Moreover, the precision of the augmentation estimates is always boosted (with no
reduction in magnitude) when broad occupation category by decade dummies are included
(columns 2 and 5) to contrast new title flows across detailed occupations within broad
categories in each decade. A comparison of the point estimates for 1980-2018 versus 1940—
1980 reveals a substantially shallower, though still robustly significant, positive slope for
the relationship between augmentation innovations and new title flows in the latter half of
the sample (31075 = 23.91(3.85) vs. A7 = 12.50(1.38)).)? Our finding is consistent
with results in Acemoglu and Restrepo (2019) indicating that new task creation slowed
substantially after approximately the mid-1980s. This pattern of a less favorable impact in

the latter four decades of our sample will be a recurrent theme of our analysis: in section

18Plausibly, they generate new machine-using tasks, which unfortunately are not measurable in our data.

19 As shown in Appendix Table Al, the standard deviations of the augmentation and automation exposure
measures are at least 85% as large in the latter as former time period (crjﬁ;iggo = 3.70, og%s = 3.51,
oitltey = 2.91, oty = 2.45). Thus, comparing the standardized effect sizes (coefficient x standard
deviation) across time periods yields the same qualitative conclusions as directly comparing the coefficients.
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5.2 we synthesize this evidence.

Figure 6 depicts the variation that drives these estimates with a set of bin scatters
plotting the flow of augmentation innovations within each of the twelve broad occupational
categories against the emergence of new occupational job titles, separately for 1940-1980 and
1980-2018. The predictive relationship between augmentation innovations and the arrival of
new titles is a pervasive feature of the data, as this figure underscores. The overall pattern
is one of remarkable consistency: in eleven of twelve occupations, and in both halves of
the sample, there is a clear, upward-sloping relationship between augmentation innovations
and new title flows. This figure further highlights the finding in Table 2 that the positive
relationship between augmentation patent flows and new title emergence slackened in the
latter four-decades of the sample—diminishing in eight of twelve occupations, increasing in

only three, and remaining essentially constant in one.

4.2 Testing causal relationships

The Table 2 estimates reflect conditional correlations that may not have a causal interpre-
tation. Indeed, our model implies that demand shifts favoring a given sector generate both
new augmentation and new automation patents, where the former further catalyzes the in-
troduction of new titles. This raises the concern that the OLS estimates are tainted by
simultaneity bias stemming from unmeasured demand shifts, which drive both innovations
and new title emergence.?’ To credibly distinguish causality from correlation, it would be
valuable to isolate exogenous variation in the flows of both augmentation and automation
innovations to test their causal effects on the emergence of new work. We develop such a
test here.

The foundation of our instrumental variables approach exploits the occurrence of break-
through innovations (Kelly et al., 2021), which represent discontinuous advances in the in-
novation environment that materialize at a specific point in time. Breakthrough patents are
both novel and impactful: novel in that they are conceptually distinct from their predeces-
sors, relying less on prior art; impactful in that they influence future scientific advances, cat-
alyzing a host of follow-on innovations. This chain of reasoning implies that breakthroughs,

recorded in patents, can potentially be used to identify exogenous flows of follow-on inno-

20This objection also invites its own objection: if variation in augmentation innovations, automation innova-
tions, and new task introductions is primarily driven by demand shifts, we would expect both augmentation
and automation innovations to predict new title emergence—but this is not the case.
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vations. The identification assumption on which this logic relies is that the precise timing
of breakthroughs is not anticipated (conditional on preexisting trends), while the arrival of
follow-on innovations is causally affected by the timing of antecedent breakthroughs. Figure
7 provides a schematic of the steps of our instrumental variables approach. We describe the
intuition of the approach below, while Appendix E provides full details on the IV procedure.

Our approach harnesses Kelly et al. (2021)’s breakthrough innovation measure, which
measures the notions of novelty and impactfulness of patents using natural language pro-
cessing tools. Specifically, Kelly et al. (2021) compare the similarity of each U.S. utility
patent granted relative to those that precede it (aka backward-similarity) to measure its
novelty, and compare it to those that follow it (aka forward-similarity) to measure impact.
A breakthrough patent is one that has a high ratio of forward- to backward-similarity, where
each is measured over the ten years before (backward) or after (forward) the patent date.
Our analysis uses the top 10 percent of breakthrough patents granted in each decade, but our
results are robust to a range of breakthrough thresholds and forward/backward similarity
window lengths.

The two panels of Figure 8 illustrate the substantive difference between breakthrough
patents and the full set of patents (inclusive of breakthroughs and non-breakthroughs). This
figure reports stacked area plots of the distribution of breakthrough and non-breakthrough
patents granted in each year between 1900 and 2000 across ten broad, exhaustive, and mu-

21 Consistent with the expectation that breakthrough

tually exclusive technology classes.
patents shift the tide of innovation across domains, panel A shows that the locus of break-
throughs has changed dramatically across decades. In the first two decades of the twentieth
century, breakthroughs are concentrated in Engineering, Transportation, and Manufacturing
processes. Over the next four decades, between 1920 and 1960, the locus of breakthrough
innovations shifts increasingly to Chemistry and metallurgy. After 1960, however, two tech-
nology categories grow to dominate breakthrough innovations: Instruments and information,
foremost, followed by Electricity and electronics. Panel B reports analogous data for overall
patenting. Unlike the pattern for breakthrough patents in panel A, the evolution of overall
patenting across domains in panel B is relatively muted and slow-moving. Nevertheless,
the class distribution of the full set of patents clearly follows that of breakthroughs, though

with approximately a two decade lag. This pattern corroborates the motivating idea of our

2IThese classes are Transportation; Manufacturing process; Lighting, heating and nuclear; Instruments and
information; Health; Engineering, construction, and mining; Electricity and electronics; Consumer goods
and entertainment; Chemistry and metallurgy; and Agriculture and food.
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instrumental variables approach: breakthroughs spur subsequent downstream innovations in
the technology classes in which the breakthroughs originate.

Our IV setup leverages this reasoning by using the flow of breakthrough innovations to
predict the flow of downstream innovations two decades later. The connective tissue for this
linkage is the Cooperative Patent Classification (CPC) system, which assigns to each patent
a primary technology class. Introduced in 2013, CPC codes have subsequently been assigned
to all U.S. and European patents ever granted. We use the 3-digit primary class assigned
to each patent, which we scrape from Google Patents. After merging codes that are almost
unpopulated, we have 127 3-digit classes.

As illustrated in the first two columns of the Figure 7 schematic, we expect breakthrough
patents to generate flows of follow-on innovations in their class. In Appendix Table A5 we
corroborate this fact by regressing patent counts on twenty-year lagged breakthrough patents
by class to document that breakthrough technologies have substantial predictive power for
subsequent patent flows in the same technology class. This relationship remains strong when
accounting for persistent class-level patenting trends by controlling for a lag in the dependent
variable; and critically, these same effects are not evident for non-breakthrough innovations.

The hypothesis that current breakthrough innovations spur future downstream (i.e., non-
breakthrough) innovations but current non-breakthrough innovations do not spur future
breakthroughs also suggests a simple test of Granger causality (Granger, 1969), which we
report in Appendix Table A6. Using a regression of patent flows by class in decade t on
future breakthroughs (top 10%) and future non-breakthroughs (bottom 10%) in decade
t + 10, we find that current innovations do not predict future breakthroughs. This confirms
that breakthroughs satisfy Granger causality for downstream innovations. (Our claim is of
course stronger: breakthrough patents cause downstream innovations. Granger causality is
consistent with but not proof of this claim.)

We harness breakthrough-predicted patent flows by technology class to generate predicted
flows of augmentation and automation innovations to which occupation-industry cells are
exposed.?? Here, we take advantage of the fact that the patent classes that are augmenting
versus automating for any given occupation are not fully overlapping. Concretely, we match
augmentation and automation patents to occupation-industry cells as outlined in Section

2.3, but with a critical difference: we link patents granted two decades prior (from decade

22We use only the breakthrough measure and decade dummies to form predictions, purging the influence of
both class fixed effects and lagged class-level patent flows.
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t — 20) to the textual descriptions of the outputs (augmentation) and inputs (automation)
of occupation-industry cells in decade t. (Thus, the downstream innovations flowing from
breakthroughs in ¢t — 20 do not enter this exposure measure.) Using these links, we calculate
each cell’s distribution of matched augmentation and automation patents from ¢ — 20 across
the 127 3-digit technology classes. These augmentation and automation exposure matrices,
each of which contains one row for every occupation-industry cell j, serve as weights. An
occupation-industry cell that, for example, had a large fraction of its augmentation-linked
patents in t — 20 in patent class G03, photography and optics, is particularly likely to be
augmented by future patents originating in the G03 class. Similarly, an occupation that had
a large fraction of its automation-linked patents in ¢t — 20 in foods and food processes, patent
class A23, is particularly likely to be automated by new patent flows in the A23 class.

We finally combine the breakthrough-induced flow of patents by class with class exposure
weights for augmentation and automation by occupation-industry cell to obtain instruments
for observed augmentation and automation patents, where class exposure weights are further
scaled by overall class-cell match probabilities. The second and third columns of the 2SLS
schematic, Figure 7, illustrate this step of the procedure.

We bring this strategy to the data by estimating equation (6) with two-stage least squares,
where we instrument AugX;, and AutX;,. We note that our instruments are Bartik-style
shift-share measures: they are a product of quasi-exogenous class-level patent flows (i.e.,
shifts) and fixed initial class exposures (i.e., shares). This setup is rigorously analyzed by
Borusyak et al. (2021), and we follow their recommendations by controlling for share main
effects in our 2SLS regressions while using the products of shifts and shares as instruments.
The last three columns of the 2SLS schematic, Figure 7, illustrate this final step of the
procedure.

Prior to reporting 2SLS estimates, Table 3 presents first-stage estimates for the rela-
tionship between predicted and observed augmentation and automation patent flows by
occupation between 1940 and 2018. The sample is identical to that in Table 2, and the three
first-stage specifications correspond to columns 1, 3, and 5 of that table. As with earlier
specifications, the regressions use the ITHS of all patent variables—instruments and endoge-
nous variables, as well as exposure main effects for symmetry—to accommodate observations
with zero matched patents. Column 1 reports a model for AugX excluding AutX. The first-
stage coefficients for AugX’s instrument for both time periods (1940-1980, 1980-2018) are
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highly precise, with a combined first stage F-statistic of 2,242.2> The second column reports
an analogous model for the flow of automation patents by occupation and decade, AutX; ;.
These first stage estimates are also highly precise, with a combined first stage F-stat of
633. The third specification in the table, which spans two columns, reports the first stages
for augmentation and automation patents estimated jointly. All four first-stage coefficients
approximately retain their magnitudes and precision from the prior two columns, with a
Sanderson-Windmeijer F-statistic of 4,060 for the augmentation instruments and 707 for
the automation instruments.

Critically, the instruments are highly effective in isolating independent variation in aug-
mentation and automation patents flows. The automation instruments have almost no pre-
dictive relationship to augmentation patents, and similarly, augmentation instruments do
not predict automation patent flows. Panels B and C of the table, which report first-stage
estimates separately for 1940-1980 and 1980-2018, robustly confirm these patterns. The
2SLS models thus appear successful in isolating cross-occupation, over-time variation in
augmentation and automation patent flows that originate from breakthrough innovations

two decades prior.

2SLS estimates: Augmentation, automation, and new work

Table 4 reports 2SLS estimates of the effect of augmentation and automation patents on
the emergence of new work between 1940 and 2018. Column 1 obtains a coefficient on
augmentation patents of equal to 12.31 (2.59), implying that a 10% increase in augmentation
patenting exposure increases new title emergence by 1.2%. When broad occupation by decade
effects are added in column 2, this point estimate increases to 13.79 (2.46). Column 3 reports
the analogous estimate to column 1, using automation patents in place of augmentation
patents. Unlike with the OLS estimates, when instrumented automation patents are included
without augmentation patents, they do not positively predict the flow of new titles—we
comment on this below. When both augmentation and automation patents are included in
the specification (columns 4 and 5), the estimated effect of augmentation patents on new
title emergence increases in magnitude and remains precise (§; = 15.92 (3.27) in column 4)

while the automation coefficient becomes negative, although less precisely estimated. When

23That the first-stage coefficients are relatively close to one is to be expected since our constructed instru-
ments closely match the count of patents in each decade on average. It is the precision of these first-stage
estimates that verifies their efficacy.
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we include broad occupation by decade fixed effects (column 5), augmentation continues to
have a positive effect on new title emergence while automation’s impact is small, negative,
and statistically insignificant.

Panels B and C of Table 4 report separate estimates for the two halves of the sample.
The estimates of the causal effect of augmentation patents on new title emergence are ro-
bustly positive across the two periods, but larger in the earlier than later period (in column
5, 540_80 = 15.21 and Bgo_lg = 11.96). Meanwhile, the point estimate for automation in-
novations is negative and generally imprecise in both periods. These 2SLS estimates thus
corroborate two results from the earlier OLS estimates: first, the introduction of augmen-
tation innovations catalyzes the emergence of new work across occupations and over time;
second, the new-work generating effects of augmentation innovations have seemingly dimin-
ished over time—indeed, the point estimates are about 20% smaller for 1980-2018 than
1940-1980. While this time pattern could potentially reflect a change in the sensitivity of
the Census Bureau’s procedure for capturing of new titles in the CAI, there are two reasons
to suspect otherwise. First, the identification of B stems from cross-occupation comparisons
in the flow of augmentation patents and new titles—and there is no expectation that a
change in CAI data collection procedures would weaken these cross-occupation correlations.
Second, our evidence below for employment and wagebills—where measurement is highly
stable across decades—shows a similar evolution in the latter four decades of the sample.

It is also instructive to compare 25LS estimates in Table 4 with the OLS estimates above.
In general, the OLS models somewhat overstate the causal effect of augmentation on new
title flows, which is consistent with the hypothesis that unobserved demand shocks partly
explain the co-occurrence of new titles and new augmentation patents (though we note that
the standard errors on the OLS and 2SLS estimates do not allow us to confidently distinguish
them). The relationship between automation patents and new titles is more negative in 2SLS
than OLS specifications, which is again consistent with the operation of unmeasured demand
drivers.

The finding that automation shocks are typically not significant independent predictors
of new titles in either OLS or 2SLS models, whereas augmentation shocks are always robust
predictors, suggests that these two variables capture economically distinct components of
innovation—which is of course foundational to our analysis. One skeptical interpretation
of these patterns, however, is that automation patents are simply a noisy measure of aug-
mentation patents, which causes the automation measure to be significant on its own but

non-robust to the inclusion of augmentation. Militating against this interpretation is that
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automation patents have significant independent predictive power for employment and wage-
bill growth in both OLS and 2SLS models, as documented in section 5. Hence, the finding
that automation patents do not predict new title flows while augmentation patents robustly

predict them appears to be a confirmation of theory rather than a failure of measurement.

Demand shocks and new work creation

Technological innovations are not the only force governing new work creation. A clear impli-
cation of our conceptual framework is that occupational demand shifts shape where new work
emerges: positive demand shifts spur innovations that generate new occupational specialties
(i.e., new tasks); conversely, negative demand shifts slow the rate of new work emergence. We
test these predictions here, first by exploiting the widely-studied China trade shock (Autor
et al., 2016) to identify adverse demand shocks to exposed occupations; and second, by ana-
lyzing the opposite impact of positive demand shocks on new work generation by leveraging
shifts in population age structure that affect employment through their impact on consump-
tion, following DellaVigna and Pollet (2007).* In both cases, we measure the differential
exposure of occupations to these shifts by leveraging their employment distributions across
more- versus less-exposed industries. Although both inward and outward demand shifts are
predicted to affect the arrival rate of new work, we find it useful to apply countervailing tests
since new work never flows in reverse and occupational titles are rarely removed from the

Census Index.

Trade shocks and demand contraction

Starting in the early 1990s, import competition from China generated a sizable negative
demand shock to many labor-intensive domestic U.S. manufacturing industries (Bernard
et al., 2006; Autor et al., 2013, 2014; Pierce and Schott, 2016; Acemoglu et al., 2016).%
While these shocks directly affect product demand across industries, they indirectly affect
labor demand across occupations. We use this variation to construct a demand shift measure

capturing occupation-level exposure to the China trade shock, using imports from China

240ur work is also related to Mazzolari and Ragusa (2013); Leonardi (2015); Comin et al. (2020), who
analyze the causal effects of age, education, and income on employment via consumption.

Z5Related work maps trade shocks to labor market outcomes in Brazil, Canada, India, Norway, Germany,
Mexico, and other countries (Chiquiar, 2008; Topalova, 2010; Kovak, 2013; Dauth et al., 2014; Balsvik
et al., 2015; Branstetter et al., 2019; Devlin et al., 2021).

32



among a set of developed countries other than the United States over the periods 1991-2000
and 2000-2014, following Autor et al. (2013) and subsequent papers.? This trade exposure
measure captures a plausibly exogenous shock to domestic occupational demand stemming
from rising Chinese productivity and falling China-facing trade barriers between 1991 and
2014.

Figure 9 plots percentiles of occupational exposure to import competition over 1990-2014,
revealing substantial variation in China trade shock exposure both between and within pro-
duction and non-production occupations. In the figure, the twelve broad occupation groups
(also used in Figure 6 above) are ordered on the y-axis by their average China trade ex-
posure, while variation in exposure among detailed occupations within these categories is
depicted along the z-axis. Within production occupations, textile sewing machine oper-
ators are the most trade-exposed occupation while, conversely, power plant operators fall
at the 40th percentile of the exposure distribution. Among transportation occupations,
bus drivers are relatively unexposed, as are insurance adjusters among clerical occupations,
and primary school teachers among professionals. On the other hand, machine feeders and
offbearers among transportation occupations; shipping and receiving clerks among clerical
occupations; and electrical engineers among professional occupations, are all more exposed

than the average production worker.

Demographics shocks and demand expansion

As a second source of demand shifts—here, positive shifts—we follow DellaVigna and Pollet
(2007) in exploiting changes in the demographic structure of the U.S. population to pre-
dict movements in industry-level demands, which in turn affect occupation-level demands.
For this exercise, we obtain predicted consumption across product categories for household
members of different ages, and combine these age-specific coefficients with population data
to construct occupational exposure as a function of changes in predicted consumption by

industry over 1980-2018, which are turn are based on changes in population age structure.?”

26 Appendix F.1 details the construction of this demand shift measure. By using China’s industry-level ex-
ports to non-U.S. destinations as a measure of potential exposure of U.S. industries to rising competition
from China, we are implicitly applying a reduced-form approach to measuring U.S.-facing import compe-
tition shocks stemming from China’s rise as an exporter (Autor et al., 2014; Acemoglu et al., 2016; Jaravel
and Sager, 2020).

2"This demand measure accounts for inter-industry input-output linkages, and hence corresponds to final
demands. Appendix F.2 provides details on the construction of this measure.
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Figure 10 illustrates variation in demand reflecting the sharp changes in demographic
structure induced by the aging of the Baby Boom cohorts. Between 1980 and 2000, these
cohorts were rapidly filling the ranks of the prime-age population, raising demand for child-
care workers, real estate, and sales-related occupations. In the post-2000 period, as these
cohorts were entering late working age and retirement, demographic demands shifted to-
wards personal service and health occupations. Education occupations experienced positive
demand shifts throughout, driven by growing cohorts of children and young adults in the

two sub-periods.?®

Estimates

We leverage these two sources of variation to estimate the effects of occupational demand

shocks on the emergence of new occupational titles as follows:

100 x THS (Newtitles; ;) = 7 x DemandX?ﬁt + BoAugX,, + 0y + X + €54 (7)

Here, AugX;, is occupational augmentation exposure as above, d; is a set of decade dummies,
and X, is a vector of controls that includes main effects for broad occupation categories
as well as occupational employment shares across all 13 broad industries. To purge any
potential mechanical association between occupational size and the rate of new title emer-
gence, we always control for each occupation’s initial (start of period) employment share
and, in one specification, for each occupation’s contemporaneous occupational employment
share change. The coefficient 3¥ reports the estimated effect of demand shift Demandet
for k € {C, D} on new title flows, where C' denotes China trade exposure and D denotes
exposure to demographic demand. Our model predicts that 3¢ < 0 and P > 0: adverse
occupational demand shifts slow new work creation whereas outward occupational demand
shifts accelerate it.

Estimates of equation (7) in Table 5 confirm these expectations. Panel A reports the effect
of inward occupational demand shocks on the emergence of new occupational titles between
19902000 and 2000-2018. We start with a basic specification that controls for decade
main effects and for each occupation’s employment shares across 12 broad occupational

categories and 13 broad industry categories (one of which is manufacturing). The column

28 Appendix Figure A3 plots by single year of age the sharp changes in population counts between 1980-2000
and 2000-2018 that underlie these demand shifts.
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1 estimate finds a somewhat imprecise negative effect of demand contractions on new title
emergence (3, = —8.77(5.75)). Column 2 adds dummies for broad occupational groups:
identification now comes from contrasts across detailed occupations within the twelve broad
occupational categories depicted in Figure 9—in effect, from variation within rather than
between rows of the figure. This increases the estimated effect to —11.49 (5.90) and makes it
modestly more precise. Column 3 adds the occupation-level augmentation exposure measure
from above to the column 1 model, thus allowing both demand shocks and augmentation
innovations to affect new title emergence. The augmentation exposure measure obtains
a precisely estimated positive coefficient of 11.45(3.00). Column 4 again includes broad
occupation fixed effects: this increases the effect of import exposure in absolute terms and
further increases precision (f; = —12.10 (5.84)). Lastly, column 5 additionally controls for
the contemporaneous change in occupational employment shares, which does not impact
the coefficient of interest. This specification is quite conservative since it controls for an
intermediate outcome (employment change) that is also directly affected by the China trade
shock. How large are the impacts of trade shocks on new title flows? Using the fact that

the import competition measure, DemandX?,, has a standard deviation of around 1.43, the

iz
point estimate of —12.44 in column 5 means] that a one standard deviation higher exposure
to import competition causes an approximately 18 percent reduction in the rate of new title
emergence.

One concern in interpreting these estimates is that they might inadvertently reflect long-
standing trends in new work creation in trade-exposed occupations that predate the China
trade shock. Panel B of Table 5 confronts this concern with a placebo test. The dependent
variable in this panel is the flow of new occupational titles from the twenty years prior to the
China trade shock, 1970-1980 and 1980-1990, while the independent variable is the post-
1990 change in import exposure, as per panel A. These placebo estimates demonstrate that
recent Chinese import competition has no predictive power for the emergence of new titles
during 1970 through 1990 in subsequently trade-exposed occupations. This result increases
our confidence that the estimates in panel A reflect the causal impact of demand contractions
on the rate of new work emergence.

Alongside confirming a central tenet of the conceptual framework, these results offer a
further substantive implication. Much evidence documents that rising import competition
has depressed employment in trade-exposed industries and associated occupations during
the last three decades (see Autor et al. (2022) for a summary). The Table 5 results reveal

that this competitive pressure not only numerically reduces employment but also depresses
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the emergence of new categories of specialized work—that is, it yields not just fewer jobs
but also less new work. This distinction is substantively relevant because, as shown below,
new work appears to be better-remunerated than existing work within the same occupation,
plausibly because it is more specialized.

Panel C of Table 5 shows that positive demand shifts speed the emergence of new occu-
pational titles, consistent with expectations (and opposite to the case for adverse demand
shocks). In column 1, the point estimate of 14.23 (7.23) on the demographic demand index
implies that a 10% increase in occupational demand shock exposure increases the rate of
occupational new title emergence by approximately 1.4%. Subsequent columns of panel C
explore robustness, applying the same specifications used for the trade-based demand shock.
Across all columns, occupations with higher predicted demand growth stemming from de-
mographic change exhibit faster new title emergence. As in panel A, these estimates are
somewhat more precise within broad occupational groups (columns 2, 4, and 5). To inter-
pret economic magnitudes, we multiply the impact estimate in column 5, equal to 12.87, by
the standard deviation of the demand shift measure, which is approximately 1.0 in the first
time interval and 1.5 in the second interval. This calculation implies that a one standard
deviation rise in occupational demand increases new title emergence by around 16 percent
(=12.87 x 1.25).

As in panels A and B, the coefficient on augmentation exposure is positive and precisely
estimated. Moreover, its inclusion has a relatively small impact on the coefficient on the
demand shift variable. Figure 11 shows why this is the case: a substantially different set
of occupations is most exposed to demographic demand shifts versus augmentation innova-
tions. Using the partial predicted effects from a version of Table 5, we find that augmentation
exposure and demand exposure are essentially uncorrelated over 1980-2018.%° Figure 11 in-
dicates that demographic demand shifts can help account for the emergence of new titles in
lower-paid personal service jobs such as housekeepers, waiters, and food preparation workers
(see also Mazzolari and Ragusa 2013; Leonardi 2015; Comin et al. 2020). Conversely, new
title emergence in high-tech jobs, such as electrical engineers and computer systems ana-
lysts, are primarily predicted by augmentation exposure. A subset of occupations, however,
particularly those in healthcare, is exposed to both positive demographic demand shifts and

a high rate of augmentation innovations. These analyses highlight that the new work has

29The regression model underlying Figure 11, reported in Appendix Table A7, is estimated using a percentile
rather than THS transformation. The percentile transformation aids visualization but does not affect
substantive results.
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multiple origins: both augmentation innovations and demand shifts affect where new spe-
cialized, labor-using tasks emerge. These forces appear to operate on distinct occupational

loci in different eras, underscoring that they deserve independent consideration.

5 Augmentation, Automation, and Occupational La-

bor Demand

We have established that task automation and task augmentation occur concurrently, often
in the same occupations, but have distinct empirical relationships with new title emergence.
What does this imply for occupational employment and, more generally, labor demand?
Our results do not so far answer this question since employment could potentially contract
in occupations where new titles emerge, or expand in occupations where tasks are automated.
The conceptual model makes a clear prediction, however: because new task creation is labor-
reinstating, it expands employment in augmentation-exposed occupations; and, conversely,
because task automation is labor-displacing, it erodes employment in automation-exposed
occupations (Proposition 1). Moreover, because of the law of one price for skill that prevails
across sectors, sectoral wagebills—the product of occupational employment and wages—
should rise or fall equiproportionately with sectoral employment (Corollary 2). We test
these predictions here. In confronting them with the data, we offer two remarks about their

generality (and limits):

1. The prediction that automation necessarily reduces labor demand in the automating
sector, despite countervailing scale and substitution effects, follows from the assumed
Cobb-Douglas structure of consumer preferences. If we instead assumed that con-
sumption goods are gross substitutes (o > 1), automation’s effect on sectoral demand
would be ambiguous. Regardless, and distinct from automation, augmentation would
necessarily boost employment and wagebills in the directly-affected sector since both
the substitution and scale effects are positive (see Remark 1).

2. The prediction that wagebills expand or contract equiproportionately with employment
in the affected sector follows from the assumption that high- and low-skill labor are
combined Cobb-Douglas (in different proportions) in each sector, while the law of one
price for skills prevails across sectors. More generally, with sector- or occupation-
specific skills, or an elasticity of substitution greater than one across skill groups in
each sector, wagebills could rise and fall more than proportionately with employment.
For our purposes, a finding that wagebills rise (fall) by at least as much employment in
occupations exposed to augmentation (automation) is sufficient to establish that these
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effects capture net demand rather than net supply shifts.

Figure 12 motivates our analysis by documenting the striking association between new
title emergence and occupational employment growth across both halves of our sample,
netting out the correlation between start-of-period title count and occupational employment
growth (which is generally negative since larger occupations grow more slowly). In both time
periods, new title flows are strong predictors of occupational employment growth—even as
the locus of new title introduction and employment growth has shifted across decades.

In the first four decades, occupations rapidly adding both employment and new titles
include clerical occupations such as stenographers, typists, secretaries, office machine opera-
tors, and bookkeepers; and blue collar production occupations, such as foremen, mechanics
and repairmen, and operative workers. Occupations such as elevator operators, lumbermen,
railroad switchmen, dressmakers, and mining occupations grew slowly and added few titles
in the same interval. In the subsequent four decades, professional and personal services
dominate the occupations rapidly adding employment and new titles: computer software
developers; dental laboratory and medical appliance technicians; vocational and educational
counselors; registered nurses; and hairdressers and cosmetologists. Conversely, blue collar
production occupations, such as machinists, machine feeders and offbearers, and white collar
clerical occupations, including bank tellers, typists, and secretaries and stenographers, added
relatively few occupational titles and exhibited substantial relative employment declines.

These patterns echo the evidence from Figure 3, showing that the locus of new work cre-
ation shifted from the middle-paid center of the occupational distribution before 1980, to the
high-paid and low-paid tails of this distribution after 1980. Appendix Figure A4 facilitates a
more direct comparison of new title growth rates across periods by applying a consistent set
of occupation codes over 1940-2018 (at the cost of lower occupational resolution). What most
stands out from this figure is the shifting fortunes of routine task-intensive occupations—both
blue-collar occupations such as operative and kindred workers, metal workers, and mechan-
ics; as well as white-collar occupations such as shipping and receiving clerks; stenographers,
typists, and secretaries; bank tellers and bill and account collectors; and library attendants
and assistants. These occupations gained substantial numbers of new titles between 1940
and 1980, and then comparatively few between 1980 and 2018.

These relationships should of course not be interpreted as causal. The model underscores
that the co-occurrence of new occupational tasks and rising occupational employment could
reflect the operation of demand shifts. To understand the effects of augmentation and

automation on labor demand, we thus shift our focus from new titles to employment and
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wagebills. We first present OLS models relating occupational employment and wagebill
changes to flows of augmentation and automation innovations, followed by 2SLS estimates

that employ the identification strategy developed above.

5.1 Employment and wagebills: Main results

We assess the relationship between augmentation exposure, automation exposure, employ-

ment and wagebills by estimating models of the form:
100 x Aln(Yy;¢) = BrAugX;;, + B2 AutX; + yis + 0t + €ije. (8)

Here, the dependent variable is the log change in full-time equivalent employment or wage-
bill in consistent three-digit industry ¢ by occupation j cells, multiplied by 100 so that
changes roughly correspond to percentage points.?’ The independent variables of interest are
AugX
quantifying exposure to automation in occupation cells. Our analysis in this section focuses
on employment changes over multiple decades (1940 through 1980 or 1980 through 2018). We

accordingly sum the citation-weighted patent matches for AugX;;, and AutX;, within each

i7.+» quantifying exposure to augmentation in industry-by-occupation cells, and AutX; ,

four-decade interval and again apply the IHS transformation. (We do the same aggregation
for our instruments when estimating a 2SLS analysis of equation (8) below.) The inclusion
of a full set of industry-by-decade dummy variables, v;; (116 industries for 1940-1980, 206
industries for 1980-2018), means that the coefficients of interest are identified by changes
in within-industry occupational employment, holding constant overall industry employment
shifts. Additional specifications include broad occupation fixed effects, further interacted
with time period dummies, d;,. Standard errors are clustered on industry-by-occupation
cells.

The first panel of Table 6 harnesses eight decades of data to fit a stacked long-difference
version of equation (8), where each observation is the log change in employment in consistent
occupation-industry cells in a four-decade interval (1940-1980 or 1980-2018). Column 1
finds that occupations that are more exposed to augmentation exhibit faster employment
growth, as predicted, a relationship that stems from contrasts both within and between broad

occupational categories (column 2). The column 1 estimate implies that each 10 percent

30Full-time equivalent employment is equal to annual hours divided by 1,750, i.e., 35 hours per week at 50
weeks per year.

39



increase in augmentation exposure predicts 0.08 percent additional occupational employment
growth between 1980 and 2018 (3, = 0.82(0.21)). Columns 3 and 4 remove the augmentation
exposure measure and replace it with automation exposure. Opposite to augmentation,
and also consistent with expectations, automation exposure predicts statistically significant
declines in occupational employment, an effect that is most pronounced between major
occupational categories. In column 3, the automation coefficient is estimated at —1.86 (0.26).

The most striking results in Table 6 emerge when including both the augmentation and
automation exposure measures (columns 5 and 6). Here, both variables have precisely esti-
mated predictive relationships with occupational employment: in column 5, 10 percent more
augmentation exposure predicts 0.15 percent more employment growth (31 = 1.54(0.21)),
and 10 percent more automation exposure predicts 0.23 percent less employment growth
(B, = —2.33, (0.27)). Reflecting the positive correlation between AugX and AutX, each of
these two coefficients is larger in absolute value when estimated jointly instead of individually.
It bears emphasis that the (now-confirmed) prediction that automation innovations erode
employment is distinct from the model’s prediction for new titles. Specifically, the model
predicts that augmentation innovations increase both occupational employment and new title
creation, whereas automation innovations erode employment but exert no independent effect
on new title creation, as confirmed above.

Panel B of Table 6 replaces the employment measure with the log of the wagebill. These
wagebill estimates prove highly comparable to the corresponding employment estimates in
panel A: the estimated coefficient for augmentation innovations in the log wagebill versus
log employment models in column 5 are 1.53 (0.23) for the wagebill versus 1.54 (0.21) for em-
ployment. The corresponding estimates for automation innovation are —2.27 (0.27) for the
wagebill and —2.33 (0.27) for employment. This pattern is consistent with our model-based
prediction but it should be viewed cautiously. Papers by Bohm et al. (2022) and Autor
and Dorn (2009) demonstrate that contracting occupations (here, those more exposed to au-
tomation) tend to retain more experienced workers and workers with relatively high earnings
given their experience, while the opposite occurs in expanding occupations (here, those more
exposed to augmentation). These compositional shifts, which are akin to quantity rather
than price changes in an earnings equation, cloud inference on the effect of augmentation
and automation on wagebills net of these compositional shifts.

We address this issue by estimating the effect of augmentation and automation inno-
vations on composition-adjusted wages, as detailed in Appendix G. Briefly, we use cross-

sectional Mincerian wage regressions in each Census year to predict the log hourly wage of
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each worker based exclusively on her schooling, race, and gender, each interacted with a
quartic in age. We take the cell-level average of these predictions to form the expected wage
in each occupation-industry cell (Wij,t), purged of occupation-industry premia. This proce-
dure delivers two new wagebill change measures (alongside the observed wagebill change,
AW;ji): the expected wagebill change (AWij,t); and the composition-adjusted wagebill
change (AWij,t), equal to the observed log change in employment plus the log difference
between the observed and composition-adjusted wage change.

Panel C of Table 6 uses as the dependent variable the expected wage, Aﬁ\/ijﬁt. Consis-
tent with Bohm et al. (2022), expected wagebill changes are less positive for augmentation
exposure and (generally) less negative for automation exposure than are observed wagebill
changes—suggesting that adverse compositional shifts in augmentation exposed occupations
partly mask any positive wage relationship. Panel D combines these results to estimate
models for composition-adjusted wagebills. Here, we find that the impact of augmentation
on occupational wagebills is modestly larger than its impact on employment (in column 5,
compare 1.65(0.24) for the adjusted wagebill versus 1.54 (0.21) for employment). Never-
theless, the bulk of the positive relationship between augmentation exposure and wagebill
changes is accounted for by higher employment rather than higher wages (and similarly for
the negative wagebill relationship with automation).

Table 7 applies our 2SLS strategy above to the employment and wagebill outcomes in
Table 6. (First stage estimates for these models are reported in Appendix Table A8.) The
2SLS models strongly corroborate the OLS results and reveal two further nuances. First,
as hypothesized, OLS point estimates for the impact of augmentation and automation on
wagebills (though not employment) appear to be biased upward relative to their 2SLS coun-
terparts. Comparing the point estimates for adjusted wagebill changes in panels D of Tables
6 and 7, the 2SLS coefficients for the effects of augmentation innovations are less positive
than their OLS counterparts while those for automation innovations are more negative. (In
column 5, BOL5 = 1.65 (0.24) and 52555 = 1.72(0.30) for augmentation; 395 = —2.41 (0.28)
and 5255 = —92.65 (0.46) for automation.) This suggests that exploiting breakthrough inno-
vations to identify downstream innovations purges simultaneity bias, likely stemming from
unmeasured demand shocks that induce positive covariances among occupational labor de-
mand, augmentation innovations, and automation innovations. The OLS point estimates are
not, however, dramatically different from their 2SLS counterparts, nor are they statistically
distinguishable with available precision (p-values for the difference between OLS and 2SLS

coefficients are 0.74 and 0.52 for augmentation and automation, respectively).

41



Second, after adjusting for compositional changes within occupation-industry cells, aug-
mentation innovations have a slightly larger effect on wagebills than on employment (in col-
umn 5 of panel A for employment, 3, = 1.61 (0.26); in column 5 of panel D for the adjusted
wagebill, B =172 (0.30)), implying that augmentation innovations spur an increase in both
employment and wages in exposed occupations. This modest difference, apparent in both
OLS and 2SLS models, hints that ‘new work’ may be more-skilled or better-remunerated
than (simply) ‘more work’. Appendix Table A1l shows evidence consistent with this possi-
bility by using the 1940 Census Complete Count file where all individual responses (including
occupational write-ins) are unmasked. These data indicate that individuals who self-report
working in occupations that are new to the 1940 CAI have higher education levels and higher
earnings (both unconditionally, and conditional on education) than otherwise comparable
workers in the same three-digit occupations. Our public use Census and ACS data for post-
1940 decades are, unfortunately, not suitable for definitively testing this intriguing result.
We leave this for future work.

The Table 6 and 7 analyses of occupational employment and wagebill changes reinforce
results in Kogan et al. (2021) and Webb (2020), who find that occupations that are more
exposed to automation (Kogan et al., 2021) or software (Webb, 2020) patents have seen

! Building on the methodology in Kogan

falling relative employment in recent decades.?
et al. (2021), our analysis in this section uniquely adds two things to this body of work:
it identifies a countervailing augmentation force, also stemming from innovation, that is
strongly predictive of occupational employment growth; and it offers causal evidence that

augmentation innovations boost labor demand while automation innovations erode it.

5.2 Evidence of accelerating automation

We found above that while the positive effect of augmentation innovations on new titles is
strongly evident in both halves of the sample, 1940-1980 and 1980-2018 (Table 2), the new
work inducing effects of augmentation innovations appeared to decline in the latter period.
We perform an analogous exercise here, both to test robustness across time periods and to
probe for evidence of a change in the tempo of augmentation or automation. Table 8 reports

both OLS and 2SLS models for the effects of augmentation and automation innovations on

31Mann and Piittmann (2021) present a contrasting finding: service sector employment grows relatively faster
in commuting zones exposed to more automation patents. Given the differing unit of analysis—geographies
versus occupations—these findings are not directly comparable.
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employment and composition-adjusted wagebills in both halves of the sample. For brevity,
we report OLS and 2SLS models of only the two most complete specifications for each
outcome (corresponding to columns 5 and 6 of Table 7).

These estimates yield three main results. First, OLS and 2SLS estimates strongly corrob-
orate the positive impact of augmentation innovations on employment and wagebills in both
four-decade intervals under study. Given that the data from these two time intervals are
built from different patent cohorts, different occupational labor task descriptors (1939 DOT
vs. 1977 DOT), and different occupational output descriptors (1950-1980 CAI vs. 1990—
2018 CAI), the stability and robustness of the estimates across epochs buttresses confidence
in the findings. We do not, however, find clear evidence of a declining effect of augmentation
on employment in this time period: OLS estimates point to a decline in magnitude in the
latter time period but 2SLS estimates do not.

Second, in both time intervals, the causal (and correlational) effects of augmentation
innovations on composition-adjusted wagebills modestly exceeds their effect on employment,
again suggesting (though not proving) that new work is economically distinct from ‘more
work’—plausibly because it is (initially) more specialized than existing work and hence
demands scarce skills.

Third, and quite strikingly, the employment and wagebill-eroding effects of automation
innovations appear substantially larger in the more recent four decades than in the prior four.
This pattern is inescapable in Figure 13, which plots the conditional relationship between
augmentation, automation, and employment growth separately for these two four-decade
intervals, using the OLS specifications from columns 1 and 5. This pattern holds true for
both employment and wagebills, and for both OLS and 2SLS models. For example, the
OLS estimate of the effect of automation on composition-adjusted wagebill is over twice as
large in 1980-2018 as 1940-1980 (£3°7%" = —1.68(0.40) and £5°~'® = —3.93(0.40)). The
corresponding 2SLS estimate is more than three times as large (427%0 = —1.19 (0.64) and
350718 — _4.32(0.66)). Scaling these estimates by their standard deviations (reported in Ap-
pendix Table A1) to yield effect sizes, and focusing on the 2SLS estimates in odd-numbered
columns, we calculate that one standard deviation greater augmentation exposure generated
3.96% (1.40 x 2.83) additional employment growth per decade over 1940-1980 and 5.32%
(1.97 x 2.70) additional employment growth per decade over 1980-2018. Performing the
same calculation for automation exposure implies that one standard deviation increment to
automation exposure generated 3.19% (0.32% per year) less employment growth per decade

over 1940-1980 and 8.61% (0.86% per year) less employment growth per decade over 1980
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2018.3% Though we caution that our innovation exposure measures are better-suited to
making within- than between-period comparisons, the constellation of OLS and IV results—
both for new task creation and for occupational labor demand— suggests that the labor
demand-displacing automation innovations accelerated over 19802018 relative to the prior
four decades while the demand-boosting effects of augmentation innovations have not kept

pace.

5.3 Sectoral employment and wagebill estimates

A substantial set of contemporary and classic papers studying the impact of technological
innovations on labor demand focus primarily on the manufacturing sector, where capital
investments are well-measured and technologies are often intensively used, e.g., in the case
of industrial robotics (e.g., Berman et al. 1994; Doms et al. 1997; Lewis 2011; Humlum 2019;
Acemoglu and Restrepo 2020; Curtis et al. 2021; Dechezleprétre et al. 2021; Aghion et al.
2022; Hirvonen et al. 2022). Because the augmentation and automation exposure measures
developed here are based on the semantic content of occupations and innovations rather
than on explicit measures of sectoral investment or technology utilization, they are not in
any sense confined to the manufacturing sector. This permits us to explore their effects on
employment and wagebills in both manufacturing and nonmanufacturing sectors.

Fitting the analogous OLS and 2SLS models above separately for manufacturing and non-
manufacturing in Table 9 demonstrates that our primary findings are not primarily driven
by the manufacturing sector.®® Rather, the positive impacts of augmentation and negative
impacts of automation on occupational employment and composition-adjusted wagebills are
present in both the non-manufacturing and manufacturing sectors, with somewhat larger and
more precisely determined relationships in non-manufacturing. Focusing, for example, on the
2SLS estimates for composition-adjusted wagebills, the impact estimates for augmentation
exposure are approximately 75 percent larger for non-manufacturing than manufacturing:
[Non-Manuf _ 1 85 (().34) and M — 1,05 (0.32). The 2SLS wagebill estimates for automa-

tion are more similar across sectors: gNenManuf — _9 49 (0.52) and et — —2 44 (0.69).

In summary, Tables 6, 7, 8, and 9 corroborate a central implication of the conceptual

32 Augmentation and automation exposure measures correspond to the inverse hyperbolic sine (IHS) of the
weighted count of matched patents.

33Since manufacturing employment is concentrated in just a few broad occupation categories, these estimates
include industry-by-decade effects but exclude occupation-by-decade effects.
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framework that motivates our analysis: despite their positive rate of co-occurrence across
occupations, augmentation and automation have countervailing causal effects on sectoral
labor demand. This is true for both employment and wagebills, for both the 1940-1980 and
1980-2018 periods, for both manufacturing and non-manufacturing, and for both OLS and
2SLS estimates, the latter of which leverage breakthroughs occurring two decades earlier as
instruments for subsequent downstream innovations. In the terminology of Acemoglu and
Restrepo (2019), our evidence confirms that automation is task-displacing and augmentation

is task-reinstating.

6 Conclusion

Much recent empirical work has focused on the displacement of labor from existing job
tasks by automation but is mostly silent on the countervailing force of labor reinstatement
occurring through the creation of new job tasks or categories requiring specialized human ex-
pertise. Using newly constructed measures of the emergence of new work within occupations,
as well as flows of innovations that may potentially augment or automate these occupations,
we find that the locus of new work creation has shifted from middle-paid production and
clerical occupations in the first four post-WWII decades, to high-paid professional and, sec-
ondarily, low-paid services since 1980. We show that new work emerges in response to both
technological innovations that complement the outputs of occupations, and demand shocks
that raise occupational demand. Conversely, innovations that automate existing job tasks
do not yield new work, while adverse occupational demand shifts slow the rate of new work
emergence. These flows of augmentation and automation innovations are positively corre-
lated across occupations but have countervailing effects on labor demand: augmentation
innovations boost occupational labor demand while automation innovations erode it. These
effects are present in both four-decade epochs of our sample and are evident in both the
manufacturing and non-manufacturing sectors. By harnessing shocks to the flow of aug-
mentation and automation innovations spurred by breakthrough innovations occurring two
decades prior, we establish that the effects of augmentation and automation innovations on
new work emergence and occupational labor demand are causal.

The data, methods, and findings in this paper also provide the foundation for further
study of the role of innovation and incentives in automating existing work and catalyzing
demands for novel human expertise and specialization. Some core questions that future

research may seek to address include:
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1. Is automation accelerating relative to augmentation, as many researchers and policy-
makers fear, or is it primarily the case that the locus of automation and augmentation
has shifted across occupations and skill groups? On the latter possibility, our evidence
is clear: automation has intensified in middle-skill occupations while augmentation has
concentrated in professional, technical, and managerial occupations and, to a lesser
extent in personal service occupations. On the former possibility, the results above
suggest that in recent decades, the demand-eroding effects of automation innovations
have intensified whereas the demand-increasing effects of augmentation innovations
have only held steady or perhaps moderated. While the augmentation and automation
exposure measures developed here lack sufficient cardinality to draw definitive conclu-
sions about acceleration or deceleration over the course of many decades, the pattern
of results across the margins of both employment and new work emergence suggest, as
in Acemoglu and Restrepo (2019), that the last four decades have seen relatively more

automation and less augmentation than the prior four.

2. Is ‘new work’ more labor-augmenting than ‘more work’? Our finding that augmen-
tation innovations increase occupational wagebills by boosting both employment and
wages suggests that ‘new work’ may be more valuable than ‘more work’—plausibly be-
cause new work demands novel expertise and specialization that (initially) commands
a scarcity premium. Identifying and quantifying such premia will require direct earn-
ings observations of job tasks and earnings of workers engaged in new work, something
that is largely infeasible in our Census public use microdata. If, as we suspect, new
work provides additional opportunities for skill formation and earnings growth beyond

‘more work’, then policies that foster new work creation may be of particular interest.

3. Our evidence establishes that augmentation and automation move labor demand in
countervailing directions, but why has the locus of augmentation and automation
shifted over time, and—more broadly—how elastic are the locus and pace of augmen-
tation and automation to incentives? Theory has much to say on this topic (Acemoglu,
2010; Acemoglu and Restrepo, 2018; Ray and Mookherjee, 2021), but direct measure-
ment is a challenge. The augmentation and automation innovation measures developed

here, and tools for identifying them, may prove valuable to this pursuit.

4. Will rapid advances in Artificial Intelligence shift the balance of innovation towards
more rapid automation across an expanding set of occupational domains? And to the

degree that Al is not exclusively automating, what novel specialties will it catalyze and

46



what skill sets will it complement? Early evidence on this question points to a broad
range of potential effects, but definitive findings are elusive so far (Brynjolfsson and
Mitchell, 2017; Felten et al., 2018a, 2019; Webb, 2020; Babina et al., 2020; Acemoglu
et al., 2021; Autor, 2022). It will be important to explore whether Al innovations
are sufficiently well-represented in patents that the classification methodology applied

above can capture Al’s full augmentation and automation potential.
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Figure 1: Median Relative Usage Frequency in Published English Language Books of New
Occupational Titles added to the Census Alphabetical Index of Occupations by Decade,
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Frequency of new vs. old titles in published texts, 1900 - 2018

Figure is calculated using Google Ngram Viewer (Michel et al., 2011). It reports the median
frequency of each decade’s cohort of new titles relative to the median frequency of the decade’s
cohort of existing titles in digitized English language books published in the United States in
every year between 1900 and 2018. Unmatched titles are dropped from the n-gram analysis. The
frequency of a title of length n is defined as the number of occurrences of the title in a year as
a fraction of the total number of n-grams in that year. The frequencies are normalized by cohort
such that the maximum frequency across all years for each cohort is one. We calculate the ratio
of normalized frequencies for new and existing titles for each year, then smooth the series of ratios
for each cohort using locally weighted regression and, finally, renormalize so that the maximum
relative frequency across all years for each cohort is one.
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Figure 2: Employment Counts by Broad Occupation in 1940 and 2018, Distinguishing
Between Titles Present in 1940 Versus Those Added Subsequently
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Figure reports the distribution of employment in 1940 and 2018 across broad occupational categories
ordered from lowest to highest-paying. The blue bars show 1940 employment, the green bars show
estimated 2018 employment in occupational titles that existed in 1940, and the red bars show
estimated 2018 employment in occupation titles that were added since 1940. Employment in 2018
is estimated by constructing a cumulative new title share in each broad occupation—summing the
number of new titles added over 1940-2018—and dividing this by the total number titles in the
2018 index adjusted for (the small number of) titles that were removed. See Appendix C.2 for
additional details.
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Figure 3: Difference Between the Occupational Distribution of the Flow of New Work
Versus the Stock of Preexisting Work by Education Group, 1940-1980 and 1980-2018
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Figure reports the difference in the share of employment in new work vs. the share of employment
in existing work separately by education group and period. Each panel reports this difference
across twelve broad occupational categories ordered from lowest to highest-paying. The blue bars

represent the average difference in employment shares over 1940-1980, while the red bars represent
the difference over 1980-2018.
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Figure 4: Linking Patents to Occupations and Industries
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Figure summarizes our five-step procedure for linking patents to occupations. The middle row de-
scribes the method for cleaning and processing patent data in preparation for creating the linkages.
The top row depicts the method for creating augmentation-based patent matches using occupation
and industry titles from the CAI. The bottom row depicts the method for creating automation-
based patent matches using DOT task descriptions.
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Figure 5: The Relationship between Exposure to Automation and Augmentation Patents
at the Occupation Level
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Figure presents a scatter plot of the relationship between occupational exposure to automation and
augmentation patents for 1940-1980 (panel A) and 1980-2018 (panel B). Each point corresponds
to the average percentile of automation (x—axis) and augmentation (y—axis) exposure of one
consistently defined three-digit Census occupation, where the average is taken over 1940-1980
(N = 166 occupations per year) in Panel A and over 1980-2018 (N = 306 occupations per year) in
Panel B. The 45 degree line in each panel is plotted with dashes..
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Figure 6: The Relationship between Exposure to Augmentation Patents and Occupational
New Title Emergence
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Each panel is a bin scatter showing the relationship between augmentation exposure and new title
emergence within broad occupations. The x-axis plots the IHS of augmentation patent matches,
and the y-axis plots the IHS of new micro-title counts. Both sets of axis labels are exponentiated.
Blue circles correspond to data for 1940-1980, and red triangles correspond to data for 1980-2018.
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Figure depicts the three steps of the 2SLS procedure. In step 1 (columns 1 and 2), breakthrough
patents are used to predict downstream innovations in the same technology classes two decades
later. In step 2 (columns 2 and 3), estimated breakthrough-induced patent flows by class are
combined with class exposure weights for augmentation and automation by occupation-industry
cell to obtain instruments for observed augmentation and automation patents. In step 3 (columns
3, 4, and 5), estimating equation (6) is fit using two-stage least squares, where AugX,, and AutX;;

Figure 7: 2SLS Schematic
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are instrumented by the predicted augmentation and automation values generated in step 2.
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Figure 8: Breakthrough Patent Flows by Class Vs. All Patent Flows by Class
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Figure presents the distribution of breakthrough (panel A) and total (panel B) patents by 10
broad technological classes in each year between 1900 and 2000 (breakthroughs) and 1900 and 2018
(all patents). We use the classification of “breakthrough” patents from Kelly et al. (2021), while
excluding patents assigned to the broad classes ‘weapons’ and ‘other’,

than 1 percent of all patents.
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Figure 9: Percentiles of Occupational Exposure to Import Competition from China, by
Broad Occupation
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Figure shows percentiles of exposure to import competition averaged over sub-periods 1990-2000
and 2000-2018 for consistent Census occupations classified into twelve broad occupation groups.
These groups are ranked vertically from lowest to highest by their mean exposure percentile.
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Figure 10: Percentiles of Occupational Exposure to Demand Shifts from Demographic
Change, 1980-2000 and 2000-2018
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Figure shows percentiles of exposure to demographic demand shifts over 1980-2000 vs. 2000-2018
for consistent Census occupations. Dashed lines indicate median estimated demographic demand
shift exposures in each period.
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Figure 11: Predicted A Occupational New Title Share Percentile From Exposure to
Augmentation vs. Exposure to Demand Shifts, 1980-2000 and 2000-2018
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Figure plots partial predicted new title flows from exposure to demand shifts against partial pre-
dicted new title flows due to augmentation exposure (both in percentile terms) for consistent Census
occupations. Predictions are based on column 4 of Table A7. Dashed lines indicate median pre-
dicted changes.
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Figure 12: Correlations between Employment Growth and New Title Emergence Rates,
1940-1980 and 1980-2018
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Figure illustrates the relationship between THS new title counts and decadalized occupational em-
ployment growth, controlling for initial-year THS title counts, and using initial-year employment
shares as weights. Plotted lines correspond to weighted partial fitted values. The weighted partial
correlation between log employment growth and the THS of new title flows is 0.331 for 1940-1980
and 0.477 for 1980-2018. 68



Figure 13: Conditional Correlations between Automation, Augmentation and Employment
Growth (based on OLS regressions)

Panel A. 1940-1980

1940 - 1980 : AE; = 1.85 AugX (0.38) —1.52 AutomXy, (0.39) + yi + &

— g o . —
o
©
o
—
o
<
o
—

2 g1

5 10 15 20 5 10 15 20
Augmentation Patents Exposure Automation Patents Exposure
IHS Patent Count
Panel B. 19802018
1980 - 2018 : AE; = 1.31 AugX;: (0.22) —3.99 AutomX: (0.35) + vy + €

QT Q1

2 4

o 7
—

Q °

o 0
©
o

— =3

g g1

5

10 15
Augmentation Patents Exposure

20

10 15 20
Automation Patents Exposure

IHS Patent Count

Figure reports bin scatters of the employment-weighted conditional correlation between decadal-

ized percent employment growth and exposure to augmentation innovations (left-hand side) and

automation innovations (right-hand side). Panel A corresponds to the regression specification in

column (1) panel A of Table 8 using consistently defined Census industry xoccupation cells over

1940-1980 (N=6,545). Panel B corresponds to the regression specification in column (5) panel A of
Table 8 using consistently defined Census industry xoccupation cells over 1980-2018 (N= 27,432).
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Table 1: Examples of New Titles Added to the
Census Alphabetical Index of Occupations by Volume, 1940-2018

Volume Year Example Titles Added

1940 Automatic welding machine operator Acrobatic dancer

1950 Airplane designer Tattooer

1960 Textile chemist Pageants director

1970 Engineer computer application Mental-health counselor
1980 Controller, remotely-piloted vehicle Hypnotherapist

1990 Circuit layout designer Conference planner
2000 Artificial intelligence specialist Amusement park worker
2010 Technician, wind turbine Sommelier

2018 Cybersecurity analyst Drama therapist

Table reports examples of new titles added to the Census Alphabetical Index of Occupations
volume of year Y correspond to titles recognized by Census coders between the start of the prior
decade and the year preceding the volume’s release, e.g., the 1950 CAI volume includes new
titles incorporated between 1940 and 1949.
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Table 2: Occupational New Title Emergence and Augmentation

versus Automation Exposure, 1940-2018

Dependent Variable: 100 x IHS Occupational New Title Count

(1) (2) (3) (4) (5)
A. 1940-2018
Augmentation Exposure 19.76%** 19.36%*** 19.78%*** 18.79%**
(4.22) (2.50) (4.57) (2.44)
Automation Exposure 13.41%* -0.03 2.85
(4.95) (4.81) (3.15)
N 1,582 1,582 1,582 1,582 1,582
R? 0.65 0.79 0.56 0.65 0.79
B. 19401980
Augmentation Exposure 28 524K 25.32%H* 26.647%H* 23.91%*%
(6.03) (3.95) (6.56) (3.85)
Automation Exposure 20.85%* 4.58 6.88+
(6.51) (5.70) (4.11)
N 664 664 664 664 664
R? 0.62 0.77 0.45 0.63 0.77
C. 1980-2018
Augmentation Exposure 7.32% 11.49%** 12.04%** 12.50%%*
(3.46) (1.53) (3.13) (1.38)
Automation Exposure -2.71 -12.70%* -5.13
(3.66) (3.92) (4.33)
N 918 918 918 918 918
R? 0.37 0.60 0.34 0.40 0.60
Occ Emp Shares X X X X X
Time FE X X X
Broad Occ x Time FE X X

N = 166 consistently defined Census occupations over 1940-1980 and N = 306 consistently defined Census
occupations over 1980-2018. Models are weighted by annual occupational employment shares at time ¢ — 1.

Twelve broad occupations are defined consistently across all decades.

Standard are errors clustered by

occupation x 40-year period in parentheses. Augmentation and automation exposure measures correspond
to the inverse hyperbolic sine (IHS) of the weighted counts of matched patents. Tp < 0.10, *p < 0.05,

**p < 0.01, ***p < 0.001.
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Table 3: First Stage Estimates for New Titles Regressions

Dependent Variable: 100 x THS Occupational New Title Counts, 1940-2018

1) @) 3)
Aug patents  Aut patents  Aug patents  Aut patents
A. 1940-2018
Augmentation IV 0.92%** 0.95%** -0.01
(0.02) (0.02) (0.03)
Automation IV 0.79%** -0.12%%* 0.79%**
(0.03) (0.03) (0.04)
N 1,582 1,582 1,582 1,582
F-stat 2241.93 633.25 1047.28 313.65
Sanderson-Windmeijer F-stat 2241.93 633.25 4060.15 707.18
B. 1940-1980
Augmentation IV 0.99%+* 1.007%** 0.01
(0.02) (0.02) (0.02)
Automation IV 0.92%* -0.04 (.92
(0.02) (0.03) (0.02)
N 664 664 664 664
F-stat 2861.72 1988.28 1361.30 1010.56
Sanderson-Windmeijer F-stat 2861.72 1988.28 3851.17 2673.12
C. 1980-2018
Augmentation IV 0.85%** 0.917%** -0.01
(0.03) (0.02) (0.03)
Automation IV 0.66%** -0.18%%* 0.67H**
(0.05) (0.04) (0.05)
N 918 918 918 918
F-stat 839.19 184.10 805.23 93.80
Sanderson-Windmeijer F-stat 839.19 184.10 2676.48 214.41
Occ Emp Shares X X X X
Time FE X X X X

Standard errors clustered by occupation x 40-year period in parentheses. First stage estimates for columns
1, 3, and 4 in Table 2. All specifications include (broad occupation x Time) and (industry x Time) fixed
effects. Augmentation and automation exposure measures correspond to the IHS of the weighted counts of
matched patents. Tp < 0.10, *p < 0.05, **p < 0.01, ***p < 0.001.
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Table 4: IV Estimates for New Titles Regressions

Dependent Variable: 100 x THS Occupational New Title Counts, 1940-2018

(1) (2) (3) (4) (5)
A. 1940-2018
Augmentation Exposure 12.31%%* 13.79%%* 15.92%%* 14.63***
(2.59) (2.46) (3.27) (2.50)
Automation Exposure -7.36 -15.48%* -2.42
(7.25) (6.93) (3.24)
N 1,582 1,582 1,582 1,582 1,582
R? 0.48 0.52 0.38 0.49 0.52
B. 1940-1980
Augmentation Exposure 12.59%* 14.10%** 16.327%** 15.2] %%
(3.89) (3.83) (4.51) (3.90)
Automation Exposure -10.97 -16.36* -1.95
(9.88) (7.08) (4.23)
N 664 664 664 664 664
R? 0.69 0.66 0.52 0.70 0.67
C. 1980-2018
Augmentation Exposure 11.01%* 11.19%** 13.40%*** 11.96%**
(4.03) (1.66) (3.34) (1.59)
Automation Exposure -1.60 -10.25* -4.48
(4.94) (4.94) (4.81)
N 918 918 918 918 918
R? 0.30 0.33 0.26 0.33 0.34
Occ Emp Shares X X X X X
Time FE X X X
Broad Occ x Time FE X X

Standard errors clustered by occupation x 40-year period in parentheses. Observations weighted by occu-
pation employment share at time ¢t — 1. Augmentation and automation exposure measures correspond to the
inverse hyperbolic sine (IHS) of the weighted counts of matched patents. Tp < 0.10, *p < 0.05, **p < 0.01,

= < 0.001.
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Table 5: Occupational New Title Emergence and Demand Contractions and Expansions

Dependent Variable: 100 x IHS New Titles

(1) (2) (3) (4) (5)
A. Negative Trade Shock
Years 1990-2000 € 2000-2018
Import Exposure -8.77 -11.49+ -9.45+4 -12.10* -12.44%*
(5.75) (5.90) (5.63) (5.84) (5.81)
Augmentation Exposure 11.45%%* 11.13%** 10.36%**
(3.00) (2.06) (2.02)
R? 0.38 0.50 0.42 0.54 0.56
B. Negative Trade Shock, Placebo Test
Years 1970-1980 € 1980-1990
Import Exposure 7.46 5.45 4.78 -0.13 -0.20
(13.34) (13.02) (11.19) (9.36) (9.47)
Augmentation Exposure 19.32%%* 18.89%** 18.80%**
(2.22) (1.90) (1.92)
R’ 0.57 0.61 0.68 0.70 0.70
C. Positive Demographic Shock
Years 1980-2000 € 2000-2018
Demand Shift Exposure 14.23+ 15.52%* 12.31+ 13.98%* 12.87+
(7.23) (7.01) (6.97) (7.10) (6.75)
Augmentation Exposure 14,27 13.81 %% 13.15%%*
(3.45) (1.70) (1.79)
R? 0.38 0.48 0.45 0.54 0.55
Time FE X X X X X
Occ Emp Shares X X X X X
Broad Ind Emp Shares X X X X X
Broad Occ FE X X X
A Occ Emp Shares X

N = 612 in Panels A and B; N = 606 in Panel C. Panel A estimates the relationship between new titles
emerging 1990-2018 and occupational exposure to import competition in the same period. Panel B (a placebo
test) estimates the relationship between new titles emerging 1970-1990 and occupational exposure to import
competition over the 1990-2018 period. Panel C estimates the relationship between new titles emerging 1980
2000 and 2000—2018 and occupational exposure to demographically-driven demand shocks. Standard errors
clustered by occupation in parentheses. Observations weighted by start-of-period occupational employment
shares. Augmentation and automation exposure measures correspond to the inverse hyperbolic sine (THS)
of the weighted counts of matched patents. Tp < 0.10, *p < 0.05, **p < 0.01, ***p < 0.001.
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Table 6: The Relationship between Changes in Employment and Wagebill and Exposure to
Augmentation and Automation within Industry-Occupation Cells,
OLS Stacked Long-Difference Regressions, 1940-2018

n ® e @ ©
A. 100 x Decadalized ALn(Employment)
Augmentation Exposure 0.82%F* 1 17 1.54%%%  1.36%+*
(0.21)  (0.21) (0.21)  (0.21)
Automation Exposure -1.86%F*  -0.67+ -2.33%FFk - _1.06%*
(0.26) (0.40) (0.27) (0.40)
R? 0.52 0.56 0.52 0.56 0.53 0.56
B. 100 x Decadalized ALn(Wagebill)
Augmentation Exposure 0.83%** 1 24%%* 1.53%#% ] 4%k
(0.24)  (0.25) (0.23)  (0.25)
Automation Exposure -1.81FF%  _0.61 -2. 27k _1.02%
(0.28)  (0.44)  (0.27)  (0.42)
R? 0.52 0.57 0.52 0.57 0.53 0.57
C. 100 x Decadalized AE[Ln(Wagebill)]
Augmentation Exposure 0.74%HF 1. 12%F* 1.42%%% 1. 31%**
0.21)  (0.21) (0.20)  (0.21)
Automation Exposure -1.76%F*  -0.68+ -2.19%FF - _1.06%*
(0.26)  (0.39)  (0.26)  (0.38)
R? 0.53 0.58 0.54 0.58 0.54 0.58
D. 100 x Decadalized ALn(Adjusted Wagebill)
Augmentation Exposure 0.90%#*  1.29%** 1.65%F* . 47%x*
(0.24)  (0.25) (0.24)  (0.25)
Automation Exposure -1.91%*  -0.60 -2.41°%0F% _1.02%
(0.28)  (0.45)  (0.28)  (0.44)
R? 0.51 0.56 0.51 0.55 0.52 0.56
Ind x Time FE X X X X X X
Broad Occ x Time FE X X X

N = 33,977 changes in employment and wagebill in consistently defined Census occupations over 1940-1980
and 1980-2018. Dependent variable is decadalized and multiplied by 100 so that growth rates are expressed
in per-decade percentage points. All employment and wagebill changes are winsorized at the 99th percentile.
Standard errors in parentheses are clustered by industry-occupation cell (using Stata command reghdfe).
Augmentation and automation exposure measures correspond to the inverse hyperbolic sine (IHS) of the
weighted counts of matched patents. Observations weighted by start-of-period employment share for each
occupation-industry cell. Long-differences are four-decade changes, 1940-1980 and 1980-2018. *p < 0.10,
*p < 0.05, **p < 0.01, ***p < 0.001.
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Table 7: The Relationship between Changes in Employment and Wagebill and Exposure to
Augmentation and Automation within Industry-Occupation Cells,
2SLS Stacked Long-Difference Regressions, 1940-2018

(1) (2) (3) (4) (5) (6)
A. 100 x Decadalized ALn(Employment)
Augmentation Exposure 1.35%#%  (.99%** 1.e1*#k 1 1%k
(027)  (0.25) (0.26)  (0.26)
Automation Exposure S2.60%FF  _1.21FF 2,65 FF  _1.38%*
(0.43) (0.47) (0.41) (0.46)
B. 100 x Decadalized ALn(Wagebill)
Augmentation Exposure 1.23%#%  (.93%* 1.50%#*  1.05%**
(0.30) (0.29) (0.29) (0.29)
Automation Exposure -2.65%F*  _1.19% -2.68%FF 1. 35%*
(047)  (0.53)  (0.45)  (0.49)
C. 100 x Decadalized AE[Ln(Wagebill)]
Augmentation Exposure 1.13**%  (.85%** 1.40%%% .97k
027)  (0.25) (0.26)  (0.26)
Automation Exposure S2.64°1F%  J1.26°%F  _2.68FFF  _1.41%*
(0.43) (0.45) (0.41) (0.44)
D. 100 x Decadalized ALn(Adjusted Wagebill)
Augmentation Exposure L.44%H%  1,07H** 1.72%H% 1 19%**
(0.31) (0.29) (0.30) (0.29)
Automation Exposure -2.60%F*  -1.13* -2.65%FF - _1.31*
(048)  (0.54)  (0.46)  (0.51)
Ind x Time FE X X X X X X
Broad Occ x Time FE X X X

N = 33,977 changes in employment and wagebill in consistently defined Census occupations over 1940-1980
and 1980-2018. Dependent variable is decadalized and multiplied by 100 so that growth rates are expressed
in per-decade percentage points. All employment and wagebill changes are winsorized at the 99th percentile.
Standard errors in parentheses are clustered by industry-occupation cell (using Stata command ivreghdfe).
Augmentation and automation exposure measures correspond to the inverse hyperbolic sine (IHS) of the
weighted counts of matched patents. Observations weighted by start-of-period employment share for each
occupation-industry cell. Long-differences are four-decade changes, 1940-1980 and 1980-2018. *p < 0.10,
*p < 0.05, **p < 0.01, **p < 0.001.
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Table 8: The Relationship between Changes in Employment and Wagebill and Exposure to
Augmentation and Automation within Industry-Occupation Cells,
OLS and 2SLS Stacked Long-Difference Regressions, 1940-1980 and 1980-2018

1940-1980 1980-2018
OLS 25LS OLS 25LS

(1) (2) (3) (4) (5) (6) (7) (8)
A. 100 x Decadalized ALn(Employment)
Augmentation 1.85%F* 2 O8FF* ] 40%F  1.22%F 1. 31%Fk (. 78%FFk 1 gTHRk ] J8%HK

Exposure (0.38)  (0.37)  (0.48) (0.44) (0.22) (0.23)  (0.27)  (0.29)
Automation -1.52%F% (.33 -1.20%  -0.41 -3.99%*% 2 06HHFK -4.35%K* 2 30*HK
Exposure (0.39)  (0.63) (0.59) (0.72) (0.35) (0.47)  (0.58)  (0.56)
N 6,545 6545 6,545 6545 27432 27432 27432 27,432
R? 0.63 0.66 0.03 0.03 0.44 0.48 0.06 0.01

B. 100 x Decadalized ALn(Adjusted Wagebill)
Augmentation 2.05%F* 233K 49%* 137 1.34%K Q.77 2. 110 1 2k

Exposure (0.45)  (0.44)  (0.56)  (0.51)  (0.23)  (0.24)  (0.29)  (0.30)
Automation -1.68%F* _0.47 -1.194+ -0.47 -3.93%K ] RTFHKK 4 32%*K D (8*HK
Exposure (0.40)  (0.68) (0.64) (0.79)  (0.40) (0.52)  (0.66)  (0.61)

N 6,545 6,545 6,545 6,545 27,432 27,432 27432 27,432
R? 0.61 0.64 0.04 0.04 0.45 0.49 0.06 0.01
Ind

x Time FE X X X X X X X X
Broad Occ

x Time FE X X X X

Changes in employment and wagebill in consistently defined Census occupations over 1940-1980 and 1980-
2018. Dependent variable is decadalized and multiplied by 100 so that growth rates are expressed in per-
decade percentage points. All employment and wagebill changes are winsorized at the 99th percentile.
Standard errors in parentheses are clustered by industry-occupation cell (using Stata command reghdfe
and ivreghdfe). Augmentation and automation exposure measures correspond to the inverse hyperbolic
sine (THS) of the weighted counts of matched patents. Observations weighted by start-of-period employment
share for each occupation-industry cell. Long-differences are four-decade changes, 1940-1980 and 1980-2018.
Tp < 0.10, *p < 0.05, **p < 0.01, ***p < 0.001.
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Table 9: The Relationship between Changes in Employment and Adjusted Wagebill and
Exposure to Augmentation and Automation within Industry-Occupation Cells,
Stacked Long-Difference Regressions, Manufacturing and Non-Manufacturing Sector,

1940-2018
100 x Decadalized 100 x Decadalized
ALn(Employment) ALn(Adjusted Wagebill)
Non-Manuf Manuf Non-Manuf Manuf
(1) (2) (3) (4)
A. OLS
Augmentation Exposure 1.60%** 1.20%%* 177 1.15%%*
(0.25) (0.32) (0.29) (0.33)
Automation Exposure -2, 73K -1.05%* -2 TRk -1.367%**
(0.33) (0.37) (0.35) (0.36)
N 21,844 12,133 21,844 12,133
R? 0.52 0.55 0.51 0.52
B. 2SLS
Augmentation Exposure L7777k 0.97** 1.85%#* 1.05%*
(0.30) (0.32) (0.34) (0.32)
Automation Exposure -2 54Kk -1.94%* -2.49%H* -2.447%HK
(0.47) (0.67) (0.52) (0.69)
N 21,844 12,133 21,844 12,133
Ind x Time FE X X X X

Changes in wagebill in consistently defined Census occupations over 1940-1980 and 1980-2018. Dependent
variable is decadalized and multiplied by 100 so that growth rates are expressed in per-decade percentage
points. Manufacturing sectors 1980—-2018 were identified using 1990 Census industrial classification scheme.
Manufacturing sectors 1940-2018 were identified using 1950 Census industrial classification scheme. All
wagebill changes are winsorized at the 99th percentile. Observations weighted by start-of-period employment
share for each occupation-industry cell. Wagebill variables are all hourly employment and all hourly wages.
Hourly wages are imputed to cells where employment but not wages are observed. All specifications include
industry x 40-year period fixed effects. Standard errors in parentheses are clustered by industry-occupation
cell (using Stata command reghdfe and ivreghdfe). Long-differences are four-decade changes, 1940-1980
and 1980-2018. Augmentation and automation exposure measures correspond to the IHS of the weighted
counts of matched patents. Tp < 0.10, *p < 0.05, **p < 0.01, ***p < 0.001.
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Appendix

A Appendix tables and figures referenced in the text
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Figure Al: Google Ngram Viewer Occurrence, by Four Major Occupation Groups

Panel A. Personal service occupations: Health services, Cleaning and protective services,
Personal services
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Panel B. Blue collar occupations: Agriculture and mining, Construction and mechanics,
Production and operatives
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Panel C. Commercial service occupations: Retail sales, Technicians, fire, and police,
Transportation
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Panel D. Professional and information occupations: Managers and executives, Professionals,
Adwvertising and financial sales, Clerical and administrative support
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Figure reports the relative frequency of each decade’s cohort of new titles relative to the cohort of
existing titles across four broad occupational groups. This figure is constructed using the procedure
used for Figure 1.
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Figure A2: The Occupational Distribution of the Flow of New Work by Education Group,
1940-1980 and 1980-2018
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Figure reports the share of employment in new work across broad occupational categories separately
for education groups and time periods in twelve exhaustive and mutually exclusive occupational cat-
egories ordered from lowest to highest-average earnings. Blue bars represent new work employment
shares over 1940-1980, and red bars represent shares over 1980-2018.
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Figure A3: U.S. Population Changes (1,000s) by Single Year of Age, 1980-2000 and
2000-2018
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Figure depicts changes in U.S. population counts in 1,000s by single years of age over 1980-2000
(blue line) and 20002018 (red line).
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Figure A4: New Title Emergence by Occupation, 1940-1980 vs. 1980-2018
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Figure shows percentiles of new title shares (defined as the ratio of the new title count over total
title count in a decade), averaged over 1940-1980 (x-axis) and 1980-2018 (y-axis). Each point is
a consistently defined Census occupation (N = 132), where the size of the circle represents mean
occupational employment size over 1940-2018. The employment weighted correlation between 1940-
1980 and 1980-2018 new title shares is 0.38. The 45 degree line is plotted with dashes.
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Table Al: Descriptive Statistics for Augmentation and Automation Exposure,
1940-2018, 1940-1980, and 1980-2018

1940-2018 1940-1980 19802018
Mean SD Mean SD Mean SD
A. Occupation x Decade
Augmentation Exposure 10.43 3.65 10.02 3.70 10.98 3.51
Automation Exposure 10.49 2.83 9.81 2.91 11.38 2.45
N 1,582 664 918
B. Occupation x Industry x Four-Decade Period

Augmentation Exposure 12.45 2.84 11.82 2.83 13.08 2.70
Automation Exposure 12.30 2.57 11.24 2.66 13.35 1.98
N 33,977 6,545 27,432

Augmentation and automation exposure measures correspond to the THS of the weighted count of matched
patents. All statistics are weighted by start-of-period employment shares.

Table A2: Descriptive Statistics for Augmentation and Automation Exposure by Sector,

1940-2018
Manufacturing Non-Manufacturing
Mean SD Mean SD
Augmentation Exposure 14.06 2.07 11.98 2.86
Automation Exposure 14.04 1.98 11.78 2.50
N 12,133 21,844

Augmentation and automation exposure measures correspond to the THS of the weighted count of matched
patents at occupation x industry level by four-decade period. All descriptive statistics are weighted by
start-of-period employment shares.
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Table A3: Examples of Patents that are Highly Augmenting for Computer Scientists and
Highly Automating for Other Occupations

A. Billing Clerks and Related Financial Records Processing
Authentication device
Systems and methods for automated exchange of electronic mail encryption certificates
Authentication system and method thereof for dial-up networking connection via terminal
Enforcing file authorization access
Verification of user communication addresses
Method and apparatus for storing confidential information
Secure end-to-end transport through intermediary nodes
Methods and apparatus for increased security in issuing tokens
Secure end-to-end transport through intermediary nodes

B. Health Record Technologists and Technicians
Method for synchronizing documents for disconnected operation
Document access auditing
Direct connectivity system for healthcare administrative transactions
Method and device for transcoding during an encryption-based access check on a database
Data classification and privacy repository
Monitoring and auditing system
Method and system for validating timestamps’
System and method for user authentication in in-home display
System, method, and article of manufacture for maintaining and accessing a whois database
Methods and systems for consolidating medical information
Synchronization of application documentation across database instances
Method and system for processing a database query by a proxy server

C. Office Machine Operators, Computer and Peripheral Equipment Operators
and Other Telecom Operators

Peripheral device for programmable logic controller
Method of authentication user using server and image forming apparatus using the method
System and method for securing data for redirecting and transporting over a wireless network
System and method for securing data
Secret authentication system
Web-enabled mainframe
System and method for authenticating streamed data

Table reports patents issued between 2000 and 2018 that are simultaneously augmentation-linked to Computer
Systems Analysts € Computer Scientists and automation-linked to Billing Clerks and Related Financial Records
Processing in Panel A, Health Record Technologists and Technicians in Panel B, and Office Machine Operators,
Computer and Peripheral Equipment Operators in Panel C.

86



Table A4: New Title Emergence Robustness to Alternative Specifications, 1940-2018

Augmentation Exposure Pctile

Automation Exposure Pctile

R2

Augmentation Exposure

Automation Exposure

(1) (2) (3) (4) (5)
A. Dep Var: Percentile New Titles
0.42%H* 0.53%** .54 1k 0.53%**
(0.07) (0.06) (0.08) (0.06)
0.12* -0.18%%* 0.01
(0.06) (0.05) (0.07)
0.31 0.52 0.19 0.33 0.52

B. Dep Var: New Title Count (Poisson model)

0.60%%%  0.31%%* 0.38%FF  .32%%*

(0.09) (0.05) (0.09) (0.06)
0.39%F%  0.18%%*%  _0.02
(0.10) (0.05) (0.05)

C. Dep Var: 100 x Dummy for New Titles (LPM)

Augmentation Exposure 0.83* 1.32%** 1.24%* 1.477%%*
(0.34) (0.30) (0.39) (0.33)

Automation Exposure -0.19 -1.03%* -0.72+

(0.26) (0.34) (0.39)

R? 0.11 0.19 0.09 0.12 0.19

Occ Emp Shares X X X X X

Time FE X X X

Broad Occ x Time FE X X

N = 1,582. Standard errors clustered by occupation x 40-year period in parentheses. Observations are
weighed by occupational employment shares at time t—1. Augmentation and automation exposure measures
correspond to the IHS of the weighted counts of matched patents. Tp < 0.10, *p < 0.05, **p < 0.01,

= < 0.001.
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Table A5: First Stage for Classes: Poisson Regressions

Dependent Variable: 100 x Count of Patents by Class, 1940-2018

(1) (2) (3) (4) (5)
Top 10% 0.603*** 0.592%%* 0.160*** 0.157+%* 0.169%***
Breakthroughs; oo (0.028) (0.035) (0.031) (0.032) (0.035)
Bottom 10% 0.156** -0. 157K -0.149%%* -0.202%+*
Non-Breakthroughs; o9 (0.050) (0.029) (0.027) (0.036)
Flow Count;_ 1.003%** 0.946*** 0.990***

(0.056) (0.052) (0.059)

Time FE X X X X
Lagged Dep Var;_o X X X
Broad Class FE X
Broad Class x Time FE X

N =1,016. Standard errors clustered by CPC3 patent class (N=127). IHS transformations applied to right
hand variables. Tp < 0.10, *p < 0.05, **p < 0.01, ***p < 0.001.

Table A6: Granger Causality Test: Poisson Regressions

Dependent Variable: 100 x Count of Patents by Class, 1940-1990
(1) (2) (3) (4) (5) (6)

Top 10% 0.174%F%  0.147F8F  0.160%**

Breakthroughs; s (0.035)  (0.033)  (0.033)

Bottom 10% -0.045+  -0.085%** -0.101**

Non-Breakthroughs; s (0.027)  (0.026)  (0.031)

Top 10% -0.056™**  -0.053%** -0.063***
Breakthroughs, 1o (0.013)  (0.015)  (0.014)
Bottom 10% 0.094%#F*%  0.099%F*F  (0.120%**
Non-Breakthroughs, 19 (0.013) (0.013)  (0.017)
Lagged Dep Var;_o X X X X X X
Time FE X X X X

Broad Class FE X X

Broad Class x Time FE X X

N = 762. All specs contain corresponding lead or lag patent flows. Standard errors clustered by CPC3
patent class (N=127). THS transformations applied to right hand variables. Tp < 0.10, *p < 0.05, **p < 0.01,
**p < 0.001.
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Table A7: Occupational New Title Emergence and Demand Expansions from
Demographic Change

Dependent Variable: New Title Percentile

(1) (2) (3) (4) (5)
Demand Shift Exposure Percentile 0.195%%  0.204**  0.181**  0.190**  0.179**
(0.069)  (0.065)  (0.062)  (0.062)  (0.063)

Augmentation Exposure Percentile 0.375%F% 0.420%**  0.410%**
(0.101) (0.059) (0.060)

R? 0.26 0.37 0.32 0.44 0.44
Time FE X X X X X

Occ Emp Shares X X X X X
Broad Ind Emp Shares X X X X X
Broad Occ FE X X X

A Occ Emp Shares X

N = 606. Standard errors clustered by occupation x 40-year period in parentheses. Observations are
weighted by start-of-period occupational employment shares. Tp < 0.10, *p < 0.05, **p < 0.01, ***p < 0.001.
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Table A8: The Relationship between Changes in Employment and Exposure to
Augmentation and Automation within Industry-Occupation Cells,
First Stage Estimates

Dependent Variable: 100 x Decadalized ALn(Employment)

1940-2018 1940-1980 1980-2018
Aug Aut Aug Aut Aug Aut
patents patents patents patents patents patents

Augmentation IV 0.97%%%  0.01 1.02%%%  0.00 0.90%%* (.02
(0.01)  (0.01)  (0.01)  (0.01)  (0.02)  (0.02)
Automation IV ~0.03%FF  0.85%F .01 0.98%F% 0. 11%%%  (.60%**
(0.01)  (0.02)  (0.01)  (0.01)  (0.01)  (0.03)
N 33,977 33,977 6,545 6,545 27432 27,432
F-stat 3680.61 1216.03 4579.87 4143.20 1578.31  230.06

Sanderson-Windmeijer F-stat 8318.59 2455.39 9919.67 8354.99 3047.14  464.97

First stage estimates for columns 5 in Table 8. Dependent variable is decadalized and multiplied by 100 so
that growth rates are expressed in per-decade percentage points. All employment changes are winsorized at
the 99th percentile. Standard errors in parentheses are clustered by industry-occupation cell (using Stata
command ivreghdfe). Augmentation and automation exposure measures correspond to the IHS of the
weighted counts of matched patents. Observations weighted by start-of-period employment share for each
occupation-industry cell. Long-differences are four-decade changes, 1940-1980 and 1980-2018. *p < 0.10,
*p < 0.05, **p < 0.01, ***p < 0.001.
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Table A9: The Relationship between Changes in Employment and Adjusted Wagebill and
Exposure to Augmentation and Automation within Industry-Occupation Cells,
Stacked Long-Difference Regressions, Manufacturing and Non-Manufacturing Sector,
First Stage Estimates, 1940-2018

Dependent Variable: 100 x Decadalized ALn(Employment) & ALn(Adjusted Wagebill)

Non-Manufacturing Manufacturing

Aug patents  Aut patents  Aug patents  Aut patents

Augmentation IV 0.967%+* 0.02 1.03%#* -0.07H**
(0.01) (0.01) (0.01) (0.01)

Automation IV -0.03%* 0.86%** -0.01* 0.75%H*
(0.01) (0.02) (0.00) (0.02)

N 21,844 21,844 12,133 12,133

F-stat 2708.97 966.03 5774.29 1245.27

Sanderson-Windmeijer F-stat 6198.86 1959.00 11482.08 2493.77

Ind x Time FE X X X X

Table reports first stage estimates for Table 9. Manufacturing sectors 1980-2018 are classified according to
the 1990 Census industrial classification scheme. Manufacturing sectors 1940-2018 are classified according to
the 1950 Census industrial classification scheme. Observations are weighted by start-of-period employment
share for each occupation-industry cell. All specifications include industry x 40-year period fixed effects.
Standard errors in parentheses are clustered by industry-occupation cell (using Stata command ivreghdfe).
Long-differences are four-decade changes, 1940-1980 and 1980-2018. Augmentation and automation expo-
sure measures correspond to the IHS of the weighted counts of matched patents. Tp < 0.10, *p < 0.05,
*p < 0.01, ***p < 0.001.
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B Constructing consistent occupations and industries

Our analyses require occupation-by-industry panels. The specificity of Census 3-digit occu-
pation and industry categories generally rises from decade to decade, with approximately
250 3-digit occupations in 1940 and roughly 500 in 2018. Simultaneously, occupation and
industry categories merge, split, and recombine. This makes it infeasible to construct a fully
balanced panel of detailed occupations and industries over the eight decades of 1940-2018
without sacrificing substantial resolution. Instead, we construct two separate panels to cover
the 1940-2018 period: one set of consistent occupations and industries over 1940-1980, and
another over 1980-2018.

The balanced panel for 19401980 is based on the IPUMS’s harmonization of the Census
Bureau’s occupation and industry coding scheme for 1950 (Ruggles et al., 2022), which we
further refine to yield a set of 166 consistent, 3-digit occupations and 116 consistent, 3-digit
industries (occ4080rj and ind4080rj). The balanced panel for 1980-2018 is based on the
consistent occupation and industry coding scheme (0cc1990dd and ind1990dd) developed
by Dorn (2009), which refines the IPUMS consistent industry/occupation 1990 scheme. We
update the Dorn (2009) series for consistency through 2018, yielding a panel of 306 consistent,
3-digit occupations and 206 consistent, 3-digit industries (occ1990dd-18 and ind1990dd_18).

We additionally construct thirteen broad industries and twelve broad occupations which
can be consistently defined over the entire 1940-2018 period. The broad industry groups
are 1. Manufacturing; 2. Agriculture; 3. Mining; 4. Construction; 5. Transportation;
6. Wholesale; 7. Retail; 8. Finance, Insurance, and Real Estate; 9. Business and Repair
Services; 10. Personal Services; 11. Entertainment and Recreation Services; 12. Professional
and Related Services; and 13. Public Sector. The broad occupation groups are: 1. Managers
and Executives; 2. Professionals (including Financial Advertising and Sales); 3. Technicians,
Fire, and Police; 4. Sales (excluding Financial Advertising and Sales); 5. Clerical and
Administrative Support; 6. Production and Operatives; 7. Transportation; 8. Construction
and Mechanics; 9. Cleaning and protective services; 10. Personal services; 11. Health
services; and 12. Agriculture and mining occupations.

In Appendix Figure A1 we further aggregate the twelve broad occupations into four
groups. Blue collar occupations contain Agriculture and Mining, Construction and Me-
chanics, and Production and Operatives. Professional and information occupations contain
Managers and Executives, Professionals (including Financial Advertising and Sales), and
Clerical and Administrative Support. Personal service occupations contain Health Services,
Cleaning and Protective Services, and Other Personal Services. Finally, Commercial service
occupations contain Retail Sales (minus Financial and Advertising Sales), Technicians, Fire,
and Police, and Transportation.

Lastly, for Appendix Figure A4 we employ a set of 132 consistent occupations over the
19402018 period (occ4018bw), obtained by further aggregating all overlapping categories
among our consistent occupations for the 1940-1980 and 1980-2018 subperiods and then
unwinding some of the overly aggregated categories, though this comes at the cost of some
measurement, error. We do not use this for our baseline results because it substantially
reduces occupational variation—central to all our analyses—and because the 1950 and 1990
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IPUMS occupation schemes are profoundly different, leading to substantial information loss
when crosswalking.

C Measuring new work

We describe in more detail here how we identify new occupation titles and how total em-
ployment in new work is constructed.

Figure A5 summarizes the Census Bureau’s procedure for classifying American Com-
munity Survey respondents’ free-text occupational write-ins to Census occupation codes.
Census clerical coders use the CAI to classify respondent write-ins, while simultaneously
flagging new and emerging write-in titles. Census managers review these candidate titles for
potential inclusion in subsequent CAIO editions.

Figure A5: Coding Process of Occupation Write-ins in the ACS

. What was this person’s main occupation?
(For example: 4th grade teacher, entry-leval
plumber)
4th gmde teacher - O cCUpation Occupation data is collected on the ACS through the use
of two write-in questions. Respondents are asked to
1. Describe this person’s most important . . X N i
33,'{;‘;?;;5;3},‘5‘,,;,.‘:,‘,’;".;?_T,;‘j;;";”"':,‘;,,g state their main occupation and describe their most
e Tt important activities or duties. Based on these responses,
lnstruet and evaluate each respondent is assigned a 4-digit Census Occupation
students and create Lesson | || dmm—Job duties Code to describe the work they do.
plans,
- N
. . Ce Empl . Class of
Occupation Job duties Occupagi‘r‘w‘mde Peer | Industry ool | Education
Instruct ang evaluate students | Elem entary I Local [ Bachelor's
4th @l’-’idt’, teacher an: weate‘{essow 'Fia""s HHXX School gwe':aﬂe‘wt :iLegreE :
Clerical coders at the National Processing Center use
Census Alphabetical Index of Occupations the Census Alphabetical Index of Occupations to
Micro occupation title Census occ code classify each respondent’s occupation write-in with an
Teacher electronics 2200 occupation code. The index contains over 30,000 micro
Teacher elementary school 2310 job titles that each correspond to one of the 570
Teacher engineering 2200 Census Occupation Codes. Coders also use
Teacher English 2200 respondents’ job duties, employer name, industry, and
Teacher English literature 2200 other characteristics to determine the best code for
each case.
Occupation Job Duties

Occupation Code

nstruct And evaluate students

and create Lesson plans 2310

4th grade teacher

C.1 Procedure for identifying new occupation titles

To extract new work added to the Census Alphabetical Index of Occupations (CAIO) be-
tween Census or ACS years t — 1 and ¢t we use the following steps:
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1. Clean titles in both ¢t — 1 and ¢ by removing capitalization, punctuation, as well as
certain common synonyms and decade-specific format changes we identify from in-
spection of CAIO volumes. This avoids unnecessarily flagging titles as potentially new
(“candidate-new”) if they are old titles that have been reformatted or reworded in
minor or predictable ways.

(a)

(b)

Examples of format and wording changes that we discard are titles like “Account-
ing Work, Accountant” and “Ad Writer” being added in ¢ when “Accountant”
and “Advertising Writer” already exist in ¢ — 1.

We also unify variations of titles which contain the same terms either in full or
abbreviated form, such as “db” for database, “pt” for physical therapy, “pv” for
photovoltaics, and “qc” for quality control.

Prior to matching, we reduce -man, -person, -work, -er, -or, -ing, -ist etc. titles to
the same word base, e.g. “Salesperson”, “Salesman” and “Sales work” are changed
to “sales”; “Adviser”, ”Advisor” and ”Advising” are degenerated to “advis”, and
‘Motorist” is degenerated to "motor”.

We clean plural forms, including those ending in “-s” or “-es”, and other specific
plural forms such as ‘-ies” when it is a plural of “-y”.

We also discard new gender-specific or gender-neutral versions of existing titles,
e.g. we treat the titles “Actor” and “Actress” as one and the same; as we do
“Waiter”, “Waitress”, and “Waitstaft”; and we discard “Chipper Operator” as
new because it replaced “Chipperman”,

We discard word order duplicates that are classified to the same Census occupation
(e.g. out of “Television Station Manager”, and “Manager, Television Station”, we
retain only one): these occur because at the time of its conception the alphabetical
index was used in printed form— multiple word orders were included to save coders
time in looking up entries. We retain any title duplicates classified to different
industries or occupations, as this may reflect (increasing) emergence of a type of
job (an example is the prevalence of IT-related titles across many industries).

Examples of words we automatically denote as synonyms are “auto” and “au-
tomobile”; “equipment operator” and “operator”; “sales”, “selling”, and “sales
representative”; “garbage” and “rubbish”; “aide” and “assistant”; “gage” and
“gauge”.

2. Exact-match and fuzzy-match of cleaned occupation titles between CAIO; to CAIO;_;.

We drop all exact title duplicates between ¢ — 1 and ¢, disregarding any spacing differ-
ences in titles. For the remainder, we retain the three most similar ¢ — 1 title matches
for each t title. Specifically:

(a)

For the exact match, we simply match the cleaned titles in ¢ to t — 1, discard
exact matches, and retain the set of unmatched CAIO; titles as “candidate-new”
titles.
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(b) Next, we fuzzy match the CAIO; candidate-new titles to all CAIO;_; cleaned
titles. We use a fuzzy-matching Jaro-Winkler algorithm which matches based on
letter-swaps, implemented in R as the package stringdist (van der Loo, 2014).
This assigns high similarity (i.e. low distance) scores to titles where a low num-
ber of single-character transpositions are required to change one word into the
other.?* It also gives higher similarity to strings matching from the beginning up
to some specified length: we set the constant scaling factor determining this at
the standard value of 0.1. For example, titles which are identical except for a
hand-keying error (“Mechanotheraplst” and “Mechanotherapist”) receive a high
similarity score.

3. Adjudicate remaining unmatched ¢ + 1 titles (“candidate-new” titles) by classifying them
as new or not new, using a combination of automated assignment and careful manual
revision. The large majority of candidate-new titles are manually revised, with only
around 1,034 automatically assigned. We observe 273,960 total titles over 1940-2018,
of which we identify 28,315 as new over the whole period.

In adjudicating candidate-new titles, our overarching goal is to identify titles that either
capture a type of job that was previously nonexistent or reflect further differentiation or
specialization of existing work. These latter cases are much more common than are entirely
new categories, and can arise from new or specialized work domains, specialization in edu-
cational or professional requirements, or the use of specialized work methods (e.g. by hand
or using a machine). On the other hand, candidate-new titles are discarded (i.e. marked as
not new) when they reflect a renaming, reformatting, or generalization of previously existing
work. This (time-consuming) manual revision requires looking beyond fuzzy-match results
to search the entire ¢t — 1 index for comparable work.

We implement these principles with the following specific rules for classifying a candidate-
new title as new or not new. While not exhaustive, these rules capture commonly occurring
cases. A t candidate-new title is:

1. New when it is a differentiation of a ¢ title, e.g. “Clinical Psychologist” is new in 1950 as
a differentiation of “Psychologist”, and “Assembler, Electrical Controls” is new in 1990
as a differentiation of “Assembler, n.s.”. This is by far the most commonly occurring
type of new title.

2. New when it adds specialized work tools to a t — 1 title, most commonly ‘hand’ or
‘machine’; or specializes operators and set-up operators. E.g. “Bookkeeping Clerk,
Machine” is new in 1970 because before only “Bookkeeping Clerk” was listed; and
“Drill-Press Set-Up Operator” is new when it is added to “Drill-Press Operator”.

34Note that we have already discarded word order duplicate titles prior to implementing this algorithm.
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3. New when it adds some additional educational or professional differentiation toa t —1
title. E.g. “Licensed Addiction Counselor” is new in 2018 as an addition to “Addiction
Counselor”; and “Health Therapist, Less Than Associate Degree” is new in 1990 as
an addition to “Health Therapist”. This is a type of new title that occurs relatively
infrequently.

4. New when it adds “not specified” or “not elsewhere classified” to a t — 1 title. This
reflects more types of this title are emerging which (for the time being) are listed as
n.s. / n.e.c. For example, “Mechanic, Instrument, n. s.” is added in 1980.

5. New when it bifurcates a t —1 title into two separate types, usually marked with “incl”,
“exc”, or “any other”. E.g. in 1980 the title “Sitter, exc. Child Care” was new since
before only “Sitter” had existed.

6. Not new when it simply reorganizes information across various columns of the index
for the same title. E.g. “Apprentice Dentist” was discarded as new in 1940 because it
already existed in 1930. This is a common reason for discarding candidate-new titles.

7. Not new when it is generalization from previously-specified title, e.g. “Ad Taker” is
not new in 1980 because it simply subsumes the 1970 titles “Classified-Ad Taker” and
“Telephone-Ad Taker”; and “Inspector Agricultural commodities” is not new in 1980
because it subsumes “Inspector Fruit”, “Inspector Food”, and “Inspector Livestock”.

8. Not new when it is the same as a t — 1 title except for filler words. E.g. “Software
Applications Developer” is not new in 2018 because the title “Software Developer”
already existed before.

9. Not new when a title is a combination of two existing titles. E.g. “Inker and opaquer”
is not new in 1980 because both “Inker” and “Opaquer” already existed in 1970.

C.2 Using new title shares as a measure of employment in new work

To construct total employment in new work by broad occupation in 2018 shown in Figure 2,
we sum the number of new titles added over 1940-2018, nr,..,, and divide this by the total
number of titles in the 2018 index adjusted for titles that were removed 7175915, separately by
broad occupation J. The adjustment in the total title count consists of adding in the implied
total number of removed titles nrge.q, if this number is positive. That is, the cumulative
new title share over 1940-2018 is %01"; where 19918 = NTop1s + Nrgead = Nr2018 + Npew —
(nra018 — NT1940)-

For Figure 3 (and Appendix Figure A2) we calculate the occupational employment of each
education group across all Census macro-occupations (approximately 300) in each decade,
and allocate employment within each macro-occupation into new and preexisting work in
proportion to the share of titles in that occupation that are newly emergent in that decade,
then convert these employment counts into employment shares across 12 broad, consistently
defined Census occupations. Differencing these occupational distributions of flows versus
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stocks by education group in two time periods, 1940-1980 and 1980-2018, gives rise to
Figure 3. We focus on the distribution of new work added by decade rather than the absolute
numbers of new titles added, because the latter also depends on available resources at the
U.S. Census Bureau for revising the index. By focusing on the occupational distribution of
new titles added—representing the flow of new titles between decade t and ¢t — 1—we require
only that efforts to keep the index representative within a decade are not biased towards any
particular set of occupations.

D Identifying augmentation and automation patents
D.1 Linking patents to occupations and industries

Augmentation innovations

To link patents to the CAI text corpus to capture candidate augmentation innovations, we
create a numerical representation of the textual content of each patent and the set of CAI
titles falling under a Census occupation and then use these representations to measure textual
similarity. We follow Kogan et al. (2021) in representing documents as weighted averages
of word embeddings.*” Word embeddings (Mikolov et al., 2013) are vector representations
of individual words, where highly related words have high cosine similarities between their
word embeddings. To turn each word into its vector representation we use the pre-estimated
set of word embeddings from Pennington et al. (2014).

We first clean and transform each document to be consistent across datasets. We remove
common “stop words” (e.g. “is”, “the”, “above”, etc.) with little informative content, retain
all nouns and verbs, and lemmatize each word by converting verbs to their present tense and
nouns to their singular form. We then extract the word embeddings for each term in the
cleaned document and average across them, leaving us with a vector representation of the
document’s meaning. We use term frequency-inverse document frequency (TF-IDF) scores
to weight the averages.?® We call the resulting TF-IDF weighted average of word embeddings
a “document vector”, which we calculate for all CAI occupation descriptions. (Our results

35 A “document” is either the full text of a particular patent or set of micro-titles falling under a Census
occupation or industry for a given Census year. A common approach for comparing textual similarity is to
represent documents as vectors that count the number of times a given word shows up in the document;
textual similarities are then computed by taking the cosine similarity of these vector representations,
relying on exact overlap in terms (what is known as the ‘bag of words’ approach). As discussed in Kogan
et al. (2021), the bag of words method for determining document similarity neglects synonyms and is likely
to perform poorly in comparing sets of documents that have disparate vocabularies, as is the case when
comparing patent texts with lists of CAI titles or DOT task descriptions. Our word embeddings approach
overcomes the synonym-blindness problem.

36TF-IDF weighting is often used in text analysis to down-weight terms that occur frequently across doc-
uments and up-weight terms that occur frequently within a document. The TF-IDF weight of term ¢ in
document k is given by wq = T'F,  x IDF,, where TFy . is the number of times term ¢ occurs in document

N documents in sample
cuments that include term ¢ /°

k divided by the total number of terms in document k, and IDF, = log (N i
We compute TF-IDF weights separately for patent documents, CAI titles, and DOT task descriptions.
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are robust to excluding any new titles from the CAI documents prior to patent matching.)

Using these document vectors, we compute the matrix of cosine similarity scores for all
patent-occupation pairs within a decadal cohort, where a cohort is a given Census year, the
set of titles in the corresponding CAI volume from that year, and the set of patents issued in
the preceding decade. To account for the fact that some types of patents have naturally low
similarity scores (e.g. those using highly technical terminology such as chemical patents),
we normalize these scores by subtracting the median score across occupations for a given
patent. We then retain the top 15 percent highest adjusted textual similarity scores across
patent p X occupation j pairs according to:

I,; =1if X, ; > 04, and zero otherwise,

where X, ; is cosine similarity between patent p and occupation j, and o, is the 85th percentile
of the similarity score distribution for period ¢. A period ¢ corresponds to a Census year
and also the set of patent issue years we consider for that Census year. Typically this will
be the previous 10 issue years (so for the 1940 Census ¢ will consist of patents issued over
1930-1939).3" We find that this method does well in generating substantively appropriate
matches between occupations and patents; Appendix Table A6 provides examples of patents
linked to Census occupations.

To aggregate individual patent-occupation matched pairs to an occupation-level (or
occupation-industry level, where appropriate) measure of technological exposure, we take
the citation-weighted sum over patents issued in period ¢ to obtain patent counts by occu-
pation over time:

_ . — _ Neitesp
Npatents;, = Z wp X Ip;  with  w, = AvgNcites, )’
peT()

where I'(t) denotes the set of all patents issued in period ¢ and y(p) denotes the issue year
cohort of patent p. Thus the sum of citation weights w,, is normalized to one in each issue year
cohort. Our results are qualitatively identical when simply taking the sum of I, ; without
weighting by citations. We have also experimented with using different thresholds for oy,
including top 20%, top 10%, top 5%, and top 1%. Our results are similar in all cases, though
signal strength weakens somewhat when applying thresholds smaller than 5%.

When studying occupation-by-industry cell-level outcomes such as employment and wage-
bill, we use patents linked to both occupation and industry cells: we refer to these linkages
as ‘industry-occupation-linked” patents. An occupation-by-industry cell, (j,7), is linked to a
patent p if the average of the adjusted occupation-patent similarity score (X, ;) and industry-
patent similarity score (X,,;) is among the top 15 percent highest adjusted textual similar-
ity scores across all patent X occupation x industry cells within a decadal cohort. The

3TWhen analyzing time-consistent occupation definitions in the post-1980 period, we skip Census year 2010
(focusing on the long change between 2000 and 2018); therefore in this case ¢ corresponds to patent issue
years 2000-2017 and the 2018 Census/ACS year.
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occupation-level document is constructed using lists of occupation titles from the CAI, as

described above. The industry-level document is constructed similarly using lists of industry
titles from the CAL>®

Automation innovations

The automation exposure measure identifies technologies that may automate existing labor-
using job tasks. Construction of this measure is identical to above but we replace CAI
micro-titles with occupational task descriptions from the DOT, using the 1939 DOT volume
for 1940-1980 patent-occupation matches and the 1977 DOT volume for 19802018 patent-
occupation matches.** Our procedure closely follows Kogan et al. (2019); Webb (2020), who
use the textual similarity between occupational task content and patent texts to measure
the ability of new technologies to perform occupational tasks. Kogan et al. (2019) study
the universe of such patents over a far longer (150 year) time period, linking them to oc-
cupational task descriptions in the 1991 DOT volume. We stress that the procedures used
here for measuring augmentation and automation innovations and their links to occupations
are constructed using fully parallel procedures. As shown in sections 4 and 5, they have
substantially distinct predictive content for new work emergence and occupational demand
shifts.

D.2 Examples of the textual content of patent-occupation linkages

Patents are classified as augmentation or automation innovations based on their match scores
with textual descriptions of occupational outputs (augmentation) and inputs (automation).
This section illustrates the textual content that gives rise to these classifications. As a con-
crete example, panel A of Appendix Figure A7 summarizes the textual information contained
in the top-100 (i.e., highest match score) augmentation and top-100 automation patents for
the occupation of Librarian during the years 2000-2018. The word clouds in the figure are
arranged in four quadrants, with columns containing terms drawn from occupational descrip-
tions (left) and from matched patents (right); and with rows containing terms associated with
augmentation (top) and with automation (bottom). To illuminate the occupational data that
are used for these textual matches, Appendix Figure A8 reports the word corpora employed
for forming patent linkages for the Librarian occupation, with the left-hand panel containing
text describing Librarians’ occupational outputs (from the CAI) and the right-hand panel
containing text describing Librarians’ task inputs (from the DOT).

As shown in the top left top quadrant of the figure, the occupational output terms for the
Librarian occupation with the highest TF-IDF weighted cosine similarity to matched aug-

38Due to the large number of industry x occupation x patent cells (the 2000-2018 period has over 100 billion
cells), we use a 5% sample of patents to approximate the 85th percentile threshold of the distribution of
patent times occupation-industry similarity scores. The 85th percentile threshold is calculated using only
industry-occupation pairs with non-zero employment counts.

39Unlike the CAI, the DOT only has occupation-level textual information. Consequently, the automation
exposure measures is always defined at the occupation level only.
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mentation patents include “education”, “medium”, “multimedia”, and “record”. The word
cloud in the bottom left quadrant reports occupational input terms for the Librarian oc-
cupation that have the highest TF-IDF weighted cosine similarity to matched automation
patents. These include “catalog”, “library”, “book”, “material”, and “bibliography”. Although
the augmentation-associated and automation-associated terms have considerable semantic
overlap, the augmentation terms tend to reflect complex roles and services (e.g., educa-
tion, medium) while the automation terms tend to encompass concrete inputs (e.g., catalog,
bibliography).

The two right-hand word clouds of Appendix Figure A7 summarize the patent (rather
than occupation) terms that most closely link to the Librarian occupation, with top terms
from augmentation patents on the top right and top terms from automation patents on
the bottom right. The terms with the highest cosine similarity to the Librarian occupation
from matched augmentation patents include “student”, “collaboration”, “multimedia”, and
“school”. The corresponding top linked terms from automation patents include “book”,
“author”, “citation”, “web”, and “ebook”. As was the case with the top linked occupation
terms, the top linked augmentation and automation terms from patents have substantial
qualitative differences, with augmentation terms capturing complex services and automation
terms capturing concrete inputs. In comparing the occupation-linked terms in the left-hand
column with the patent-linked terms in the right-hand column, it bears note that one should
not expect the top terms in occupational descriptions to precisely match the top terms in
patent descriptions. Rather, the linkages among these terms derive from their similarity in
word embedding space.

Appendix Figure A9 illustrates the context in which these patent terms are used by re-
porting sentences from two top-100 patents linked to Librarians. The augmentation-linked
patent is titled US6676413B1 Method and system for preventing illiteracy in substantially
all members of a predetermined set, and includes terms such as “students”, and “literacy”.
The automation-linked patent is USS8676780B2 System and method for citation processing,
presentation, and includes terms such as “citation”, “document”, and “bibliography”. This
automation patent supplies a computer-based method for “identifying in an electronic docu-
ment an unformatted citation”, and “querying one or more citation libraries to find possible
matching citations”, among other capabilities.

Panel B of Appendix Figure A7 displays an analogous set of word clouds for the ex-
ample occupation of Computer Systems Analysts & Computer Scientists. As with Librari-
ans, augmentation-linked terms tend to capture complex services whereas automation-linked
terms tend to reflect concrete tasks. In the textual description of the Computer Systems
Analysts & Computer Scientists occupation, terms such as “software”, “analyst”, “system”,
and “security” are among the most similar to augmentation patents, whereas “input”, “pro-
gram”, “step”, and “output” are among the most similar to automation patents. Among
patents matched to this occupation, augmentation-matched patents contain terms such “cus-
tomer” and “service” whereas automation-matched patents include “input” and “output”.
Unsurprisingly, there is also overlap in these terms: “computer” and “system” receive high
similarity scores in both augmentation and automation matches.
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Figure A6: Examples of Individual Patents Linked to Census Occupations

Patent name

Linked Occupation

A. Examples of Occupation Linkages for 1940

Thermal insulating material

Pie making process

Towing dolly

Process for the production of antiseptic agents
Corn popper

Lever locking device

Toecap for toe dancing shoes

Spring roller venetian blind

Multiple elevator system

Artificial fish bait

Fruit squeezer

Combination hand weeder and cultivator

Mail covering

Variable speed power transmission mechanism
Chord finder for tenor banjos

Roof sump or floor drain

Guided transmission of ultra high frequency waves
Telephone and telegraph signaling system

Asbestos and insulation workers

Bakers

Chauffeurs and drivers, bus, taxi, truck, and tractor
Chemical engineers

Cooks—except private family

Cranemen, hoistmen, and construction machinery operators
Dancers, dancing teachers, and chorus girls

Decorators and window dressers

Elevator operators

Fishermen and oystermen

Fruit and vegetable graders and packers—except in cannery
Gardeners—except farm and groundskeepers

Mail carriers

Mechanics and repairmen-railroad and car shop

Musicians and music teachers

Plumbers and gas and steam fitters

Radio and wireless operators

Telegraph operators

B. Examples of Occupation Linkages for 2018

Systems and methods for unmanned aerial vehicle navigation
Stabilised supersaturated solids of lipophilic drugs
Telepresence robot with a camera boom

Systems and methods for detecting malware on mobile platforms

Method of treating Attention Deficit Hyper-Activity Disorder
Document revisions in a collaborative computing environment
Mobile personal fitness training

Broccoli based nutritional supplements

Insulation with mixture of fiberglass and cellulose

Determining text to speech pronunciation based on an utterance from a user
Rotary drill bit including polycrystalline diamond cutting elements

Method and system for navigating a robotic garden tool
Cuticle oil dispensing pen with ceramic stone

Adaptive audio conferencing based on participant location
Identification and ranking of news stories of interest
Fumigation apparatus

Low profile prosthetic foot

Invertible trimmer line spool for a vegetation trimmer apparatus

Aircraft pilots and flight engineers

Chemists and materials scientists
Communications equipment operators, all other
Computer programmers

Counselors, all other

Editors

Exercise trainers and group fitness instructors
Food cooking machine operators and tenders
Insulation workers

Interpreters and translators

Jewelers and precious stone and metal workers
Landscaping and groundskeeping workers
Manicurists and pedicurists

Meeting, convention, and event planners

News analysts, reporters, and journalists

Pest control workers

Podiatrists

Tree trimmers and pruners




Figure A7: Word Clouds for Textual Linkages Between Occupations and Patents
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Figure depicts word clouds of terms that drive occupation-patent matches for two occupations, Li-
brarians (panel A) and computer systems analysts & computer scientists (panel B). The left column
contains terms from occupation documents with high similarity to patent documents. The right
column contains terms from matched patents with high similarity scores to occupation documents.
The size of included terms are proportional to their TF-IDF weighted cosine similarity to terms in
either matched patents (left column) or matched occupations (right column).
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Figure A8: Example Occupation Text for Librarians

2018 CAIO Micro-Titles

1977 DOT Task Description

2435 LIBRARIANS

Acquisitions librarian
Audio visual arts director
Audio visual collections specialist
Audio visual director

Audio visual librarian
Audio visual specialist
Bibliographer

Bookmobile librarian
Catalogue librarian
Cataloguer

Chemical librarian

Chief library circulation
department

Childrens librarian
Classifier

Director of visual education
Film librarian

Hospital librarian

Institution librarian

Law librarian

Librarian medical records
Librarian professional
Librarian, n.s.

Library media specialist
Manager branch

Manager circulation

Manager, n.s.

Media librarian

Medical librarian

Medical record librarian
Multimedia services coordinator
Mussic librarian

Prison librarian

Record librarian

School librarian

School library media specialist
Superintendent, n.s.
Supervisor library

Visual education director

100.127-014 ‘' LIBRARIAN (library)

Maintains library collections of books, serial publications, documents,
audiovisual, and other materials, and assists groups and individuals in
locating and obtaining materials: Furnishes information on library ac-
tivities, facilities, rules, and services. Explains and assists in use of
reference sources, such as card or book catalog or book and periodical
indexes to locate information. Describes or demonstrates procedures for
searching catalog files. Searches catalog files and shelves to locate in-
formation. Issues and receives materials for circulation or for use in
library. Assembles and arranges displays of books and other library
materials. Maintains reference and circulation materials. Answers cor-
respondence on special reference subjects. May compile list of library
materials according to subject or interests. May select, order, catalog,
and classify materials. May plan and direct or carry out special projects
involving library promotion and outreach activity and be designated
OUTREACH LIBRARIAN (library). May be designated according to
specialized function as CIRCULATION LIBRARIAN (library);
REFERENCE LIBRARIAN (library); or READERS-ADVISORY-SER-
VICE LIBRARIAN (library).

Figure reports the text corpora used to create occupation-level documents for Librarians.
The left panel lists micro occupational titles in the 2018 CAI that are associated with the
Librarian macro occupation. The right panel shows the task description for Librarians from
the 1977 DOT.
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Figure A9: Excerpts from Patents Linked to Librarians

Augmentation
Linked

US6676413B1 Method and system for preventing illiteracy in
substantially all members of a predetermined set

o Standardized oral fluency assessments are administered for a prede-
termined set of at least one student in a database in a computer system.
Results from the standardized oral fluency assessments are recorded for
each.

o The Create/Edit menu item may be used to create database entries
for the students, classes, schools, and district monitored by the literacy
system.

o Previous literacy programs have reported on the reading skills of stu-
dents, but they have not provided for reporting on the performance of
teachers in the improvement of those reading skills.

e The results of those measures are recorded in a database and a stan-
dardized predictive measure of the current level of literacy of individual
students is calculated.

Automation
Linked

US8676780B2 System and method for citation processing, presentation
and transport and for validating references

e The citation editor add-in scans the document and identifies citations
entered into the document by the author.

o All of the citations in the document are properly formatted and the
software inserts the citations into a bibliography.

o This gives users the ability to easily navigate between their citations
and their bibliographies while writing and editing.

e A search term field is presented wherein citation terms forming the
citation query are presented to the author.

Figure reports example sentences from two selected patents that are augmentation-linked
to Librarians in the top panel, and automation-linked to Librarians in the bottom panel.
Terms that have high cosine similarity scores to those in the Librarian occupation document

are bolded.

E Instrumenting innovation exposure

Predicting class-level patent flows

As described in section 4.2, we construct an instrument for contemporaneous exposure to
augmenting and automating patents by using the information in previous breakthrough
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patents to predict future patent flows at the technology class level. Using 127 3-digit Coop-
erative Patent Classification (CPC) boundaries to define technology classes, we explore this
predictive relationship in the following estimating equation:

In (E (Pus| P5_5)) = a + BPE s + % + 0 (A1)

Here, P.; is the count of patents granted in class ¢ in decade ¢, P£—20 is the count of
breakthrough patents in this class two decades prior, v is a vector of decade effects, and
some specifications additionally control for broad tech class main effects (i.e. the same 10
broad technology categories as in Figure 8) and their interactions with decade dummies.
With these controls included, § is identified by over-time, within-class variation in the flow
of breakthrough patents. We estimate this model using a Poisson regression, with break-
throughs awarded during 1920 through 2000 as the independent variable and all utility
patents granted between 1940 and 2018 as the outcome variable. Because there are fre-
quently zero breakthroughs in a CPC3-by-decade cell, we use the IHS of the breakthrough
count for Pc%—20' The first and second columns of the 2SLS schematic (Figure 7) illustrates
this step of the procedure.

Table A5 documents the substantial predictive power of breakthrough patents for sub-
sequent patent flows in the same technology class. Controlling only for decade fixed-effects
in column 1, the breakthrough patent variable obtains a coefficient of 0.603 (0.028), imply-
ing that a 10% higher flow of breakthrough patents in a three-digit class predicts 6% more
patents in that class two decades later. Column 2 tests whether this predictive relationship is
particular to breakthrough patents in a class by including a measure of the count of bottom
10% breakthroughs (i.e., the least novel and impactful patents) in each class two decades
prior. The point estimate on the top 10% breakthrough measure is essentially unchanged
in this specification (0.592 (0.035)), while the coefficient on the bottom 10% breakthrough
measure is only one-quarter as large (0.156 (0.050)).

The slow evolution of overall patenting across domains depicted in the lower panel of Fig-
ure 8 raises a concern that our estimates might in part reflect persistent class-level patenting
trends. Columns 3 through 5 of Table A5 address this possibility by including the twice-
lagged value of the dependent variable, that is, the count of patents issued in the patent class
two decades prior. This variable takes a coeflicient of 1.00 (0.056) in column 3, confirming
strong serial correlation. Conditional on this measure, the coefficient on the top-10 break-
through measure is a precisely estimated 0.160 (0.031) while the corresponding coefficient
on the bottom-10 breakthrough measures is —0.157 (0.029). Thus, after accounting for se-
rial correlation, breakthrough (top-10%) patents robustly predict an increase in subsequent
patenting whereas bottom-10% patents predict a slowdown. Columns 4 through 5 further
probe these relationships by including one-digit class fixed effects (column 4) and their in-
teractions with decade dummies (column 5). Inclusion of these covariates has little impact
on the magnitude or precision of the coefficients of interest. These models thus corroborate
the hypothesis that breakthrough innovations spur subsequent downstream innovations in
the same patent class. Critically, these same effects are not evident for non-breakthrough
innovations.
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By regressing contemporaneous patent flows by class in decade t on future breakthroughs
(top 10%) and non-breakthroughs (bottom 10%) in decade t+10, we can test whether current
innovations do not predict future breakthroughs—as they should not. Table A6 reports this
test of Granger causality (Granger, 1969). Because we must drop three decades of data to
include leads of the breakthrough measure (recall that the breakthrough data extend only
through the year 2000, and the previous specification used breakthroughs with a two decade
lag), the first three columns use the restricted sample to repeat the main specifications
from Table A5 (columns 3 through 5). Echoing earlier results, these models confirm that
in the restricted sample, breakthroughs strongly predict subsequent same-class innovations.
The next three columns test whether the reverse is true. Consistent with expectations,
future breakthroughs do not positively predict where current innovations are taking place;
in fact, they are negative predictors. This is logical since breakthroughs are likely influential
in part because they originate in technology classes where there is little current innovative
activity. Meanwhile, bottom 10% future patents are strongly positively correlated with earlier
patenting in the same class. This is also logical: classes where patenting is active at present
subsequently produce a plethora of low-impact downstream innovations. Hence, Table A6
confirms that breakthroughs satisfy Granger causality for downstream innovations.

Having confirmed the predictive power of breakthroughs for downstream innovations, we
use them to predict patent flows in each class for each decade ¢ 1940 through 2018, which we
denote by the vector Py, using a version of equation (A1). In constructing these predictions,
we use only the breakthrough measure and decade dummies, purging the influence of both
class dummies and the lagged dependent variable from the predictions formed from the
Poisson specification.*’

Instrumenting augmentation and automation innovations

The second step of the IV strategy harnesses Py to generate predicted flows of augmenta-
tion and automation innovations to which occupation-industry cells are exposed. Here, we
leverage the fact that the set of patent classes that are augmenting versus automating for
any given occupation are not fully overlapping. Concretely, we match augmentation and au-
tomation patents to occupation cells as outlined in Section 2.3, but with a critical difference:
we link patents granted two decades prior (from decade t —20) to the textual descriptions of
the outputs (augmentation) and inputs (automation) of occupation-industry cells in decade
t. Thus, the downstream innovations flowing from breakthroughs in ¢ — 20 do not enter this

40We do this by first regressing the IHS of lagged tech class breakthrough patent counts on broad technology
class-by-year dummies and THS lagged 3-digit CPC patent counts. We retain the residuals, which we call

Pft_Qo. Then we predict future tech class patenting as in the Poisson specification (A1), except we replace

the (IHS transformed) breakthrough count Pft—20 with the residualized version ]50%_20. This procedure
yields Py, the vector of time-t predicted future tech class patent counts. We find that this two-step linear
residualization, Poisson prediction procedure succeeds in generating final predicted tech class patent counts
that are driven by (and strongly correlated with) prior tech class breakthroughs, but are also uncorrelated
with broad technology category fixed effects or the prior tech class patent flows.
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exposure measure. Using these links, we calculate each occupation cell’s citation-weighted

probability of matching to a given prior patent in each tech class, denoted as Aj;®,, and

)\i‘t‘fzo.“ Specifically, let I'(¢, t —20) denote the set of patents issued in tech class ¢ in decade
t —20; p index a given patent; PatentMatch(p, j,¢)*9, an indicator for whether patent p was
augmentation-matched to the time-¢ description of occupation j; and, Citation Weight,, the
number of citations to patent p, scaled by the average number of citations for patents issued

in the same year as patent p. Then the cth element of the vector )\ifzo is given by

aug >p € I(et—20) PatentMatch(p, j, 1)**9 x Citation Weight,

Jau _ A2
€, t—20 >p € I(et—20) Citation Weight,, (A2)

The elements of A3t,, follow analogously. We call AJ¢%,5 and Af{y, the class exposure

weights, which act as “shares” in our shift-share instrument design.

Combining the predicted patent flows by class with class exposure weights for augmenta-
tion and automation by occupation cell, we calculate instruments for observed augmentation
and automation patents as:

aug __ 1/ yaug aut __ P/ yaut
Tieo = PiAtoog and 7wyt = PATY o0 (A3)

Thus, our instrument is the estimated breakthrough-induced flow of patents in each patent
class in a decade, multiplied by the augmentation and automation patent class exposure
weights for each occupation cell. The second and third columns of the 2SLS schematic
(Figure 7) illustrates this step of the procedure.

We estimate equation (6) with two-stage least squares, where the inverse hyperbolic
sine-transformed 75y® and 72* serve as instruments for AugX;, and AutX;,. We take the
[HS to put the instruments for augmentation and automation patent exposures in the same
units as their endogenous counterparts. We note that 7{¢® and 7§{"* are Bartik-style shift-
share measures, in that they are a product of quasi-exogenous class-level patent flows (i.e.,
shifts) and fixed initial class exposures (i.e., the shares), a setup that is rigorously analyzed
by Borusyak et al. (2021). We follow the recommendations of Borusyak et al. (2021) in
controlling for share main effects in our 2SLS regressions while using the products of shifts
and shares as instruments.’> The last three columns of the 2SLS schematic (Figure 7)

illustrate this final step of the procedure.

41The augmentation measure varies at the occupation-level when we analyze occupational new titles, but at
the occupation-industry level when we analyze labor demand in section 5. The automation measure varies
only at the occupation level since it is based on the Dictionary of Occupational Titles. In a slight abuse
of notation, we use j to denote both occupation cells and occupation-industry cells, as relevant.

42These main effects are the tech class sized-weighted average match probabilities: w;_og - )‘ftu—gzo and

Wi_20 - )\f‘t“fm, where w;_o is a vector of citation-weighted, two-decade lagged tech class shares in total
patenting. Goldsmith-Pinkham et al. (2020) study an alternative Bartik instrument case where shares are
used as exogenous instruments.
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F Constructing demand shifts using Chinese import competition
and population aging

Here, we detail the construction of occupation-level demand shifts using (a) exogenous
changes in Chinese import competition; and (b) exogenous shifts in consumption stemming
from changing population demographics.

F.1 Chinese import competition

We obtain import data for manufacturing industries classified by consistent SIC 87 codes
(8IC87_dd) over 1991-2014 from Autor et al. (2013). (Because the China trade shock had
run its course by 2014 (Autor et al., 2022), we use trade exposure data for 1991 to 2014)
We crosswalk these SIC 87-coded data to consistent Census industries (ind1990ddx) using
1991 value-added weights obtained from the NBER-CES Manufacturing Industry Database.
To correspond with our Census data, which are coded in ind1990dd_18 format, we create a
classification (ind1990ddx_18) that aggregates manufacturing categories as needed to yield
a balanced panel of 69 manufacturing industries.

We retain years 1991, 2000, and 2014, and construct long differences over 1991-2000 and
2000—2014, scaling these to match the time periods of our primary data (1990-2000 and
2000-2018). For each industry, this gives us two changes in import competition, defined as
changes in Chinese imports for other developed countries (AMZ%C) divided by the industry’s
U.S. market size in 1988 (U.S. industry output plus imports minus exports, Y; 1985 +M; 19085 —
E;1983). We use these industry-level changes in import exposure to construct occupational
exposure to changes in import competition, as seen in equation (A4) below. Note that for
non-manufacturing industries, the China exposure values are zero by definition. Hence, an
occupation’s exposure to the China trade shock depends on (1) the share of its employment
that is found in manufacturing; and (2) the occupation’s employment distribution across
manufacturing industries that differ in their China trade exposure.*?

oC
Eiji—10 o« AM;
Eii 10 Yigs + Migs — Xigs

DemandX§, = 100 x }_

j7t -

(Ad)
In this expression, the first term to the right of the equal sign is the share of employment
of occupation j across industries ¢ in the decade prior to the shock. The numerator of the
second term, AMZ%C, is the change in each industry ’s imports from China among a set of
developed countries other than the United States over the periods 1991-2000 and 2000-2014,
following Autor et al. (2014) and subsequent papers. The denominator, Y; ss + M; ss — Xi s,
is initial domestic absorption of industry i’s output, equal to the sum of the real value
of industry shipments and industry imports minus industry exports, each measured in the
initial, pre-shock year of 1988. Summing the product of the first and second terms across

43 All regression models control for occupational employment shares in manufacturing so that identification
is not driven by the simple manufacturing/nonmanufacturing contrast.
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industries and multiplying by 100 yields an estimate of each occupation j’s total exposure
to the trade shock, expressed as a percentage point change relative to baseline.

F.2 Population aging

We use Bureau of Labor Statistics” Consumption Expenditure (CE) data over 2002-2018
combined with Census population data over 1980-2018 to predict annual demand for each
Uniform Commercial Code (UCC) product category over 1970-2018 (largely following DellaV-
igna and Pollet 2007, who use population aging to predict long-run stock market price
changes among firms impacted by demographic change), and then crosswalk these predic-
tions to consistent industries (1ind1990dd_18) to obtain predicted consumption by industry.

Figure A3 shows changes in the population by age over 1980-2000 and 2000-2018, high-
lighting the importance of the aging Baby Boom generation. In the first period, this cohort
was prime-aged and having children, also leading to an increase for ages 0 to 10. Over the
subsequent two decades, the entry of this cohort into middle- and late-adulthood created a
large spike at ages 55 and above, as well as a smaller increase (echo) in the number of young
adults.

For each UCC category (k), we take the following steps.

1. Annualizing consumption. The CE rotational design provides an unbalanced panel
in which each consumption unit (CU)—effectively a household—appears in a subset of
months. We use all twelve monthly CE surveys within each calendar year and scale up
the recorded consumption of each CU by [12 =+ (number of months the CU appears in
the survey)].

2. Pooling data. We pool the annualized CE data across 2002-2018. For UCC categories
that are not present in all years, we scale consumption by the number of years the UCC
is observed. This yields c;, the average annual consumption for consumption unit ¢
and UCC product category k.

3. Estimate age-consumption profiles. We estimate the age-consumption profile re-
lating consumption by consumption unit ¢ and product category k£ to the household
structure observed in the CE data as:

cik = Y BikHij + Y vieSii + Y 0k 0ij + €in,
J J J

where H;; is the dummy indicating whether household 7 has a head in age bin j, S;;
is a dummy indicating whether household ¢ has a spouse in age bin j, and O;; is the
number of other people (i.e. other than head or spouse) of household i in age bin 7,
and ¢, is the error term. Note that this regression has no intercept, such that the
coefficients can be interpreted as consumption per household member. We estimate
this model separately for each UCC product category and weight models by population
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weights. Note that pooling data across years assumes consumption profiles by age are
stable over time: this is supported by DellaVigna and Pollet 2007’s analysis.

. Calculating household age shares. We estimate year-averaged shares of head,
spouse, and other household members using population weights available in CE data:

>; Nr of heads in CU 7 in age bin j x CU ¢’s pop weight

hy = > ; Nr of total members of CU ¢ in age bin j x CU i’s pop weight
B > Nt of spouses in CU ¢ in age bin 7 x CU ¢’s pop weight
= > i Nt of total members of CU i in age bin j x CU i’s pop weight
o >i Nt of other people in CU i in age bin j x CU ¢’s pop weight
j

~ 32, Nr of total members of CU i in age bin j x CU i’s pop weight

. Predicting consumption. We combine the estimated age-consumption coefficients
and household share data (constructed above in steps 3 and 4, respectively) with Census
population data over 1980-2018 to obtain aggregate predictions of consumption:

Cht = Z Nji X (Bj,khj + YjkSj + Sjkoj)»
J

where N, is the total U.S. population within the age bin j in year t. As such, Cp
is predicted consumption for product category k in year ¢, based on the changing age
distribution of the population over 1980-2018.

. Crosswalking predictions to consistent Census industries. We crosswalk these
predictions to consistent Census industries using the following crosswalk path: CE —
PCE 2017 — BEA commodity 2012 — BEA industry 2012 — NAICS 2012 — NAICS 2007 —
CIC 2010 — CIC 1990 — ind1990dd — ind1990dd_18, where

o CE is the Consumer Expenditure Survey;

o PCE 2017 are 2017 Personal Consumption Expenditures;

o BEA commodity 2012 are 2012 Bureau of Economic Analysis commodity codes;

o BEA industry 2012 are 2012 Bureau of Economic Analysis industry codes;

o NAICS 2012 are 2012 North American Industry Classification System codes;

o NAICS 2007 are 2007 North American Industry Classification System;

o CIC 2010 are 2010 Census industry codes;

o CIC 1990 are 1990 Census industry codes;

e ind1990dd are consistent industry codes constructed by David Dorn; and

e ind1990dd_18 are our modified version of these codes to allow extension of the
panel to 2018.
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To link CE to PCE we use the weights indicated by the BLS. For PCE categories that
match to multiple BEA commodities, we allocate across categories using producer value
as weights. This allows us to manually include the trade and transportation margins
from the BEA use table when crosswalking PCE to BEA commodity codes without
dropping retail and wholesale commodities. In all other crosswalks, expenditures are
split evenly when one category matches to multiple categories. In our baseline demand
shift results shown in Table 5, we used full input-output adjustments (since industry
demands intrinsically have an input-output component). Our results are robust to
using demand shifts without input-output linkages, i.e. equating BEA commodity and
industry codes.

We finally apply these predicted consumption levels by industry to construct occupational
exposure to demographically-induced demand shifts for 1980-2000 and 2000-2018 as follows:

Eiii ~
Demandet =100 x ) —9l o Aln demand, ;. (A5)
i 7,t—1
Here Aln demand, ; is 100 times the predicted log change in demand for output of industry
¢ in time interval ¢, E;;;_; is the start-of-period employment of occupation j in industry ¢,
and F;;_; is the start-of-period employment of occupation j across all industries.

G Constructing composition-adjusted wages

Bohm et al. (2022) and Autor and Dorn (2009) show that contracting occupations tend to re-
tain more experienced workers—and workers with relatively high earnings given experience—
while the opposite occurs in expanding occupations. This induces a negative correlation
between occupational employment changes and wage changes. These compositional shifts—
akin to quantity rather than price changes in an earnings equation—cloud inference on the
earnings of workers of given skill levels. We address this issue by estimating the effect of
augmentation and automation innovations on composition-constant wages in three steps.

In step one, we estimate cross-sectional log hourly wage regressions in each census year
to obtain predicted wages in the primary Census and ACS samples:

Wt = Qnt + Sn' Bt + (Sn X An)l B2t + (Sn X Ai) B3t + €nt. (A6)

Here, w,,; is the log hourly earnings of worker n, S,, is a vector of dummies for completed
schooling categories, and A, is years of age. To account flexibly for education-experience
profiles, equation (A6) includes a quadratic in age fully interacted with the vector of schooling
levels. This model is fit separately for each of eight demographic groups (male/female x
white/Black /Hispanic/other) in each time period to form a predicted wage for each worker,
Wy

In step two, we collapse predicted and observed log wage levels into means within con-
sistent industry-by-occupation cells. Combining these estimates with cell-level employment

o~

allows us to calculate observed wagebills (W;; ), predicted wagebills (W;;,) (means of fitted
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values of equation A6), and composition-adjusted wagebills (W/ij’t), where the composition-
adjusted wagebill is equal to the observed log change in employment plus the log difference
between the observed and predicted wage in an industry-occupation cell.**

The final step estimates the relationship between augmentation exposure, automation
exposure, and occupational wagebill changes using equation (8) above, where the dependent
variable is the log change in an occupation-industry’s wagebill (AW;;;), expected wagebill
(AW;;,), or composition-adjusted wagebill (AW;,,).

44 An industry-occupation cell with no employment has an undefined wagebill. A small subset of industry-
occupation cells have positive employment in the IPUMS samples but no valid wage data because all
workers in the cell are either self-employed or have invalid wage reports. We impute the predicted wage
for these cells using fitted values from equation (AG).
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H Theory appendix

H.1 Model

Environment

We begin with two sectors, producing skill-intensive and skill-non-intensive goods or ser-
vices, Ys and Y. The subscripts denote the respective sectors. A representative household
consumes goods Yy and Ys according to:

U(Yy,Ys) = Yive™?, (A7)

where 5 € (0,1); P; is the price of good j with j = U, S; P the ideal price index; Y is
total utility; and PyYy + PsYs = PY. Let Y be the numéraire so that P = 1.5 We
will later allow for exogenous changes in 3, reflecting demographic or taste shocks that
shift preferences for consumption between skill-intensive and skill non-intensive services. We
simplify the structure of consumption by assuming that there is no leisure and hence labor
supply is inelastic.

Each sector produces a unique final output by combining a unit measure of tasks i €
[N; — 1, Nj|:

g _

[ el (49

Y, =
=4
where y;(4) is the output of task 7 in sector j; o is the elasticity of substitution between tasks
(assumed identical across sectors j € {U, S}).

Each task is produced by combining labor composite of high- and low-skill types, n;(i),
or capital, k;(i) with a task-specific intermediate ¢;(¢). The production function for task ¢
is given by:

() {quj(l)nk’j(l)l_n if ¢ S [NJ — ]., Ij] (AlO)
Yi\r) = . . N e - ;
Bq; ()" (), ()]~ if i € (15, Ny
where B; = ][l — n]""'n~" for notational convenience; the parameter n € (0,1) is the
share of output paid to intermediates; ~,(4) is the productivity of the labor composite n;(7)
(relative to capital); and I; and N; are the equilibrium thresholds for automation and new
task creation, respectively, meaning tasks from N; — 1 to [; are produced by machines and

45Given that consumption is Cobb-Douglas, P is given by:

P(Py, Py) = [fgfr {1]?5} B (A8)
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those from I; to IN; are produced by labor. We make the following assumption:
Assumption 1 ~;(i) is strictly increasing.

Assumption 1 implies that in each sector, labor has strict comparative advantage in tasks
with a higher index. This assumption guarantees that, in equilibrium, tasks with lower
indices will be automated in each sector, while those with higher indices will be produced
with labor.

Task-specific intermediates ¢;(z) embody the technology used for the production of each
task ¢. The automation of an existing task or creation of a new task requires the production
of a corresponding new intermediate. We start by assuming that intermediates are supplied
competitively and are produced using t; units of the final good (and hence are priced at
t; in units of final output). When we model endogenous innovation responses below, profit
opportunities in intermediate creation serve to allocate the supply of intermediate-creating
entrepreneurs across sectors.

The measures of high-skill and low-skill labor are given by H > 0 and L > 0, respectively.
The labor composite n;(¢) in each sector is a Cobb-Douglas combination of H and L labor:

(i) = 1(6) by (3) . (A11)

Both types of labor are used in each sector, but H labor is used more intensively in S
sector, and L labor is used more intensively in the U sector (0 < ag < ay < 1). Let
Ly, Lg, Hy, and Hg be the equilibrium labor allocations to each sector. Then, Ly + Lg = L
and Hy + Hg = H. We define here a wage index reflecting the price of the sectoral labor
composite, W; = a; % (1 — o)W’ Wy %, where Wy, and Wy equal the economy-wide
wage for L and H labor, respectively. Finally, capital is sector-specific, with sectoral capital
stocks Ky and Kg taken as given, and R; is the capital rental rate for sector-specific capital.

Equilibrium

Before characterizing the equilibrium in our model, we simplify with two assumptions.
Assumption 2 We have K; < Kj, where Kj is such that R; = % for j € {U,S}.
J

This ensures that the capital rental rate is sufficiently high in each sector that new tasks
will be adopted immediately and will increase aggregate output. If Assumption 2 were not
satisfied, new tasks would be more expensive to produce than the tasks that they potentially
displace, i.e., the lowest index tasks, so that new tasks would either reduce productivity or
would simply not be adopted.

The next assumption simplifies the determination of the automation threshold, I;. Be-
cause labor has a strict comparative advantage in tasks with a higher index, i.e. 4, there is
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a unique threshold I ; in each sector such that

=) (A12)
For all tasks i < I;, we have that R; < W;/v;(4), so these tasks are potentially more cheaply
produced with capital. However, if I; < I ;, then the state of automation acts as a constraint
on which tasks are accomplished by capital. In particular, the threshold task that will be
performed by capital is I = min{[~ ;. 1;}. We simplify the set of cases considered by invoking
the following assumption:

Assumption 3 We have that I; = I; < lzj, so that the threshold task in each sector is
constrained by the state of automation.

Assumption 3 implies that when a new automation technology is introduced, it is always
adopted. With this assumption and the fact that tasks are competitively supplied, the price
of task 4, p;(4), is given by:

R;7"ifi€ [N, — 1,1
pj@:{f e L (A13)
[Wj/2 @ it i € (I, N;]
Combining equations (A7) and (A9), the demand for sectoral task output y;(i) is:
yi (i) = [P3/p; (D)7 Y; = B;Y Py~ p; (i) ™7, (A14)

where j € {U,S}, 5y = § and g = 1 — . Together with the fact that the supply of y; ()
is a Cobb-Douglas aggregate of labor, capital, and intermediates, we can obtain the sectoral
demands for capital and labor for each task i, respectively:

1—n|B,YP 'R ifie [N, — 1,1,
kj(i)Z{[. ‘n]/% FoRT e N~ ) (A15)
O le € (I],Nj]
and
, 0ific [N; — 1,1
ZJ(Z): J o ‘1 W]. 6 o (A16>
=By P [G] i€ (1N

where 6 =1 — (1 —n)(1 — o).

We can define a static equilibrium in a similar way to Acemoglu and Restrepo (2018):
Given a range of tasks [IV; — 1, NV;], automation technology I; € (N; — 1, N;], and a capital
stock K for each sector j, a static equilibrium is summarized by a set of factor prices W7,
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W, and Rj; threshold tasks I and I*; employment levels, L; and Hj; and aggregate output,
Y;, for each sector j, such that

o I; is determined by equation (A12) and I¥ = min{/ i I;}, which is equal to I; by
Assumption 3;

o The capital and labor markets clear in each sector, so that

/Nlj—l[l — B Py R di = K (A17)

. 1 w.17°
1- YPot J di— L. Al
/Ij [ U]E] J ’Yj(i) [VJ(Z)] 1 i ( )

where Ly = Ly Hy " and Ls = (L — Ly)*s (H — Hy)'~%;

o Factor prices satisfy the ideal price index condition:

. . N; .
Pl = [I; - N; + 1]RV + W= /1 7 (3)°~Ldi. (A19)

] .
J

Proposition A1l In the static equilibrium defined above, aggregate output of sector j is given
by:

1 1 -1
1 —=nY; =P |[I; = N;+1]7 K;7 + l (A20)

Proof See Appendix H.2.

Innovation and employment

We now consider the consequences of changes in the task structure in each sector, specif-
ically, the effects of task automation and task augmentation, on sectoral employment and
wagebills. Automation occurs when previously labor-using tasks are taken over by capital,
corresponding to a rise in the sectoral automation threshold, I;. Augmentation refers to the
introduction of new labor-using tasks in a sector, corresponding to a rise in N;. In a single-
sector model, the effect of augmentation and automation on labor demand depend solely on
substitution and scale effects in that sector. In our multi-sector setting with labor mobility
and heterogeneous skills, augmentation and automation in either sector affects labor demand
in both sectors, causing sectoral labor reallocation.
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Proposition 1 (Employment effects of automation and augmentation) Automation
in sector U (a rise in Iy ) increases the range of sector U tasks produced by capital, which
decreases employment of both high-skill and low-skill workers in that sector. These workers
move to sector S. Augmentation in sector U (a rise in Ny ) has the converse effect: by
introducing new labor-using tasks in sector U, it increases employment of both high-skill and
low-skill workers in that sector, drawing away these workers from sector S. That is,

o v <o, o e
oLy HH, oLy OHs
ane ong >0 ane ang < 0

These derivatives have the opposite sign when augmentation or automation occurs in sector

S.
Proof See Appendix H.2.

This proposition, a key testable implication of the conceptual framework, reveals the
direction of labor flows in response to automation and augmentation. All else equal, au-
tomation in a sector leads to the contraction of that sector by reducing employment of both
types of workers, whereas augmentation in a sector attracts workers of both types.

Three mechanisms jointly underlie the co-movement of low- and high-skill workers across
sectors in response to automation or augmentation. First, tasks are gross substitutes in
each sector (0 > 1), so automation in a given sector implies a fall in that sector’s labor
share (and conversely for augmentation). Second, high- and low-skill labor are combined in
Cobb-Douglas fashion in each sector, so the wagebill paid to each skill group by a sector is
proportional to that sector’s labor share. Finally, the share of aggregate expenditure devoted
to each sector is fixed by the utility function (equation A7). Hence, automation in a sector
spurs a decline in the sector’s labor share, yielding an inward shift in both high- and low-skill
sectoral labor demand relative to the other sector.

We directly test the implication that sectoral employment rises with sector-specific aug-
mentation and falls with sector-specific automation in Section 5, where we equate occupations
in the empirical analysis with sectors in the model.

Remark 1 Automation necessarily reduces employment in the automating sector, despite
countervailing scale and substitution effects, due to the assumed Cobb-Douglas structure of
consumer preferences (eqn A7). If instead, consumption goods were gross substitutes (i.e.,
with a substitution elasticity exceeding unity), automation’s effect on sectoral employment
would be ambiguous. In either case, distinct from automation, augmentation would neces-
sarily increase employment in the directly affected sector due to substitution and scale effects
that are both positive.

Naturally, changes in sectoral labor demands alter the economy-wide skill premium,
Wy /Wy, as explained in the next corollary.
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Corollary 1 (Sectoral innovations and the aggregate skill premium) Automation in
the U sector raises the skill premium, Wy /Wy, by reducing labor demand in the low-skill
intensive sector. Augmentation in the U sector lowers the skill premium by increasing labor
demand in the low-skill intensive sector. Conversely, automation in the S sector lowers the
skill premium while augmentation in the S sector raises the skill premium. Formally,

OWu/Wi) 0Wu/Wyr)

OWu /Wr) 0(Wu /W)
i ’ e a/Wr 2H/WE) - .

oIy ’ ONg

< 0,

This corollary spells out general equilibrium implications of innovations that reallocate the
distribution of tasks between labor and capital in either sector. Our empirical analysis does
not focus on these general equilibrium empirical implications, and the next corollary explains
why.

Corollary 2 (Changes in sectoral wagebills by skill group) Due to the law of one price
for skill, the effect of innovation on the log sectoral wagebill of a skill group relative to its
wagebill in the non-innovating sector is identical to its effect on the log relative sectoral
employment of that skill group. Formally:

(WL Ly/WiLs) _ dln(Ly/Ls) dln(WyLy/WiLs) _ dln(Ly/Ls)

oIy oIy 4 INy ONy
aln(WHHU/WHHs) _ 8ln(HU/Hs) 81H(WHHU/WHH3) _ aln(HU/Hs)
oIy - oIy ’ ONy - ONy

and similarly for innovation in the S sector.

This corollary, which echoes Proposition 3 in Hsieh et al. (2019) and follows from the mo-
bility of labor across sectors, provides a testable implication that we examine in Section 5:
the impact of sectoral innovations—which we measure using augmentation and automation
patents—on the sectoral wagebill by skill group will mirror those for sectoral employment.

Remark 2 The prediction that wagebills expand or contract equiproportionately with em-
ployment in the affected sector follows from the assumption that high- and low-skill labor are
combined Cobb-Douglas (in different proportions) in each sector, while the law of one price
for skills prevails across sectors. More generally, with sector- or occupation-specific skills,
or an elasticity of substitution greater than one across skill groups in each sector, wagebills
could rise and fall more than proportionately with employment. In our empirical analysis in
section 5, a finding that wagebills rise (fall) by at least as much employment in occupations
exposed to augmentation (automation) is sufficient to establish that these effects capture net
demand rather than net supply shifts.

Shifts in consumer demand and innovation
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To understand the interaction between shifts in consumer demand and innovation, we work
with a simple, one-period framework, which utilizes the general results above but endogenizes
the supply of intermediates that embody task-specific technologies. At the start of the
period, two state variables determine the equilibrium variables: factor prices and output.
A measure of entrepreneurs of exogenous supply E, where E is some large number, choose
whether to supply labor to each of four sector-innovation cells: automation in sector U,
new task creation in sector U, automation in sector S, and new task creation in sector S.
We denote the number of entrepreneurs in each sector-innovation cell EY| E§, E? and E¥,,
respectively.

In each sector, entrepreneurs generate new intermediates that embody augmentation and
automation technologies according to

Al = E} (A21)
AN’ = EY, (A22)
AL’ and AN/ are realized immediately.
Entrepreneurs have utility given by
U, = max {wi" + vej, (A23)

P2 me{I,N}, je{u,s}

where UT" is the (period) utility of entrepreneur z working on innovation m € {I, N} in
sector j € {U,S}. The idiosyncratic preference terms €7, are independent Type-I Extreme
Value draws with zero mean, and the parameter v scales the variance of these idiosyncratic
terms. Entrepreneurs choose the sector and innovation activity that delivers the highest
utility.

Under the distributional assumptions above, the share of entrepreneurial labor supplied
to each sector-innovation cell has a closed-form analytical expression. Denote by 7" the
fraction of entrepreneurs that move to sector j to work on innovation m. Then,

exp ()"

= 35 Yom exp (W) (A24)

Thus, 1/v can be interpreted as a labor supply elasticity, as in Caliendo et al. (2019).
Applying the law of large numbers, the measure of entrepreneurs supplying labor to sector

7 working on innovation m is
El'=r"E (A25)

Competition among entrepreneurs to become technology monopolists implies wages as
follows:
wi = V" (A26)

J
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where V™ is the value of innovation m in sector j.

Demand for intermediate g;(¢) is given by:

vy Y PYRSTT o e [Ny =1, 1)

(i) =14 W \(-m-0) (A27)
v Y F7 (3) if i € (I;, N;]
Gross profit from automating task I are
0 (1— g (I)=(1— u)nY}Pnglfn)(l*U) if I is produced with capital
(s = - —0
(1= p)abqi (1) = (1 — p)nY; Py (%)(1 D T produced with labor

(A28)
where 1 — p represents the per-unit profit relative to the marginal cost of the intermediate-
good firm.*® Note that (1 —n)(1 — o) =1 — 6. Hence the sectoral value of automating task
I and of creating task N are given by, respectively:

I_ . Aq_ll—a—_ Wj e
Vi =0 —wnY;F |R; (%’(D) ] (A29)

W' 1—6
v = ey () - (A30)

7i(N)

Having determined the sectoral value of automating task I and of creating task N, we
study how these incentives for automation and new task creation change in sector j in
response to a demand expansion, i.e., an increase in [ if 7 = U, or an increase in (1 — /) if

j=S.
Lemma 1 In equilibrium, we have that VN = V.

Lemma 1 implies that entrepreneurs are initially indifferent between creating new automation
or augmentation intermediates; otherwise the initial allocation of entrepreneurs was not in
equilibrium. Note that in this equilibrium there are still positive productivity gains from
additional task automation and from additional new task creation, by Assumptions 2 and 3.

As these incentives given by VjI and VjN determine wages, the employment share and
changes in I and N for each sector naturally follow by consulting (A24) and the innovation
production functions (A21) and (A22).

46We follow Acemoglu and Restrepo (2018) to assume that a firm with entrepreneurs has a proportionally
lower marginal cost, u, compared to 1, the marginal cost of a firm without entrepreneurs.
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Proposition 2 A demand shift towards a given sector unambiguously increases new task
creation relative to automation in that sector, while decreasing new task creation relative to
automation in the other sector.

OANy - 9AIy ANy _ 9Aly

9 B 7 9(1—p) = O(1-p)
0ANs _ 0AIs  OANs - 0Als
op op > o(1-p) — o(1-p)

Proof. See Appendix H.2.

This proposition indicates a positive relationship between demand shifts and new task cre-
ation. When there is a positive demand shift in a given sector j, the incentives for new task
creation in that sector increase as a result of movement on two margins: on the demand
side, both output and price increases, and on the factor side, the price of capital increases
more than that of effective labor as capital supply is inelastic, increasing the price differ-
ential between the two factors. This increased price differential raises the potential returns
to new task creation, which assigns tasks from capital to labor.*” Section 4.2 corroborates
an implications of this proposition: outward demand shifts accelerate new task emergence
whereas inward demand shifts decelerate it.

H.2 Proofs of propositions

Proof of proposition Al
The price index P; is the minimum cost for buying an additional unit of good j in equilibrium.

Given that equation (A9) is CES, the corresponding expression for the marginal cost of

o

Using equation (A13), equation (A31) can be written as:

producing Y; is given by:

1

[ wireal (A31)

Nj—1

| | [1-n][1~o]
o L / o2 ' di
I Ny-1 7 5 |(0)
5 s (N a1
= [I; = N; + 1]RV7 + W7 /I 7, (6)°di (A32)

J

with [1 — ][l — o] =1 — 6 given that 6 = [1 — n]o + 1.

47This result relies on the fact that tasks are gross substitutes in each sector, o > 1, so that a change in the
sectoral relative price of capital versus labor increases the profitability of innovations that expand usage
of the factor whose relative price has fallen.
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We can rewrite the factor-market clearing conditions (equations (A17) and (A18)) to

solve for W; and R; in equilibrium:

R e N L
= | [ (433)

and

I — N; + 1]] . (A34)

l{:[u—m@Y%’l
J Kj

Substituting the expressions for W; and R; from equations (A33) and (A34) into equation
(A32) gives:

1-6

&

[ —n)g Y Py~
K

J

P17 —[I, = N, +1] [ =Ny + 1]1

1-6

s TN
yj(i)g_ldz] /1 7v;(3) Ydi

J

[1 =B Y P/ N
" [ £j /1]-

Bringing the P; on the left-hand side to the right-hand side and using that 2=¢ =5 /[1 — 7]
gives:
1L 1 =1 N; N6—1 7.1L o1 o1
[1—nlY; =P [[Ij = N;+1]7K;7 + [/], Vi (0)°di]7 L;° ]

Proof of proposition 1

Wagebills must satisfy:

WiLy = aVshPyYy = aVspBY (A35)
WiLs = a°skPsYs = a”sk[1 — BlY (A36)
WyHy = (1 —aY)st:PyYy = (1 —aY)shBY (A37)
WyHg = (1 —a®)s5PsYs = (1 —a%)sk[1 — BlY (A38)

>

where Wy and Wy are the respective wages for low-skilled and high-skilled workers. Ace-
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moglu and Restrepo (2019) show that the labor share in sector j is given by:

1T k151
1 I )
+[ L ] [Cj] ]

with o the elasticity between tasks in goods production and

L _
;=

S

[ )i

F' = o—1 N; . L
[; = Ny + 117 + [0 ;(8)7 di

J =

(A39)

(A40)

Step 1. Wage determination. From assuming perfect competition in the low-skilled and
the high-skilled labor market, the marginal product of low-skilled and high-skilled labor to

produce one unit of efficient labor (labor composite) in both the skill-non-intensive and the

skill-intensive sector must be equal to their corresponding marginal costs, which are the

low-skilled wage and the high-skilled wage, respectively. Formally,

WL = OéULgU_lHllj—aUWU — Oés(L _ LU)Ocs—l(H . HU)l_aSWS
Wy =(1—oau)Li" Hy*" Wy = (1 — as)(L — Ly)**(H — Hy)"**Ws

Rewriting using the expressions for Ly and Lg above, we have

c c
W, = aUL—ZWU = s _SLU Wy
c c
Wy = (1 — ozU)H—ZWU =(1-as)5 —SHUWS

Thus,

oy L—LU_ g H—HU
]_—O[U LU _1—045' HU

(A41)
(A42)

(A43)

(A44)

(A45)

Therefore, we know that Ly, Hy, and thus their product £y always move in the same

direction, and this is opposite in sign to the movements of L — Ly, H — Hy, and their

product Lg.

Given the co-movements of labor allocations, in the following steps, it is sufficient to

analyze the relationship between high-skilled labor supply in sector S and the relative wage

ratio to pin down the entire labor allocation. The responses to innovations follow from there.
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Step 2: Sectoral Labor Supply Condition. From (A45), we can solve for Ly in terms of Hy:

L
LU ~ 1-ay o5 H-H (A46)
aUU 1725 HUU + 1
This gives us an expression for the relative wage ratio of high- and low-skilled labor:
l—ay L
Wy _1-av Ly (A47)
Wi ay  Hy
Or alternatively,
L 1— 1—
Hy= [+ -2 H (1= as){ — av) (A48)
W—fLI 1—agy g — oy

Therefore, since ay > ag, the supply of high-skilled labor in sector S, H¢ = H — Hy, is

increasing in the relative wage ratio, VM%’ We call this upward-sloping relationship the Sec-

toral Labor Supply Condition, indicating that when % increases, both types of labor flow
L

into the skill-intensive sector, S.

Step 3: Sectoral Labor Demand Condition. Combining equations (A35), (A36), (A37), and
(A38) we have

L sk
C—Z = Ci (A49)
ol g )
L] ]

_ (WH )aU_aS agU(l—aU)lfaUﬁ

=Ws
where €' = 2 = (W o (—as) o5 (1-F)"

B
1-8
Therefore, combining the implication from (A45), the fact that ¢ > 1, and the fact that
ay > ag, we know L must be increasing with ‘S/V—’Lf and it is the reverse for Lg. Therefore,
Hyg is also decreasing in Vv% We call this downward-sloping relationship the Sectoral Labor
Demand Condition. This downward-sloping relationship captures the fact that rise in ‘S/V—IL{
increases the output price for the skill-intensive sector S, which causes the representative
consumer to substitute away from S and towards U. As a result, labor demand for both H

and L fall in S and rise in U.
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We use a graph with Hg as the x-axis and Vm‘i—;’ as the y-axis to illustrate that:

o Automation in sector U decreases I'yy, so that relative demand for labor in sector S
shifts outward, and in equilibrium, Ly, Ly, and Hy decrease, Lg, Lg, and Hg increase,

and Wi increases:
Wy, ’

o Augmentation in sector U increases ['y, so that the relative demand for labor in sector

S shifts inward, Ly, Ly, and Hy increase, Lg, Lg, and Hg decrease, and ‘;VV—’Z decreases;

o Automation in sector S decreases I'g, so that the relative demand for labor in sector S

shifts inward, Ly, Ly, and Hy increase, Lg, Lg, and Hg decrease, and VV[[/,—’Z decreases;

o Augmentation in sector S increases I'g, so that the relative demand for labor in sector

S shifts outward, Ly, Ly, and Hy decrease, Lg, Lg, and Hg increase, and ‘S/V—’L’ increases

Proposition 2: Innovation Responses of Employment and Wage Ratio

DO .. . T D1 S

W,

Relative wage ratio,

Augmentation iné Il

Automation in U

Automation in S
- . D2

Augmentation in U

Hy; increasing < Sectoral allocation of H — Hjy increasing

Proof of corollary 1
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Included in the proof for Proposition 1.

Proof of corollary 2
Follows directly from taking ratios among (A35), (A36), (A37), and (A38).

Proof of proposition 2

Assumption 3 implies
W W

7(I¥) I (N))

so that it is always profitable to automate and create new tasks. In the initial equilibrium, we

> R; >

will have that V}N = VjI (see Lemma 1). Differentiating the value functions of sector j with
respect to 3, we obtain the effect of a positive demand shift on incentives for automation

and new task creation in sector j:

vl  ov,pe . w; \'7
I 79T (1~ Rl.—a_< 7> + X (1 — p)nY;P?
N D
A B C
(A51)

o[(H) " -

VN oy, pe S \'? )
i onh x<1—u>n[( W; ) R X (1= jY;P?

s _9p () ’ op _—
A B F b

(A52)

Equations (A51) and (A52) cover two cases. First, when j = U, term (A) is positive as
output and prices increase from the outward demand shift. For the value of additional task
automation, A multiplies a term (B) which is positive by Assumption 3, as an increase in
the range of tasks that are automated increases productivity. Similarly, for the value of
additional augmentation, A multiplies a term (F) which is positive by Assumption 2, as an
increase in new tasks also increases productivity. Since rental rates rise more strongly than
do wages, term C' is negative, and term F' is positive; and both C' and F multiply a positive
term (D). Therefore, the incentive for new task creation in the sector with the demand
expansion are unambiguously positive and exceed the incentive for task automation in this

v v

sector, o5 95

Second, when j = S, terms B, D, and E remain positive, while the sign of terms A, C,

if in the initial equilibrium VjN = le since this implies B = F.
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and F' reverse. Hence, in response to a demand contraction in sector U, the incentive for

. . . vl . .
new task creation in sector S is reduced: both overall, 85 < 0, and relative to automation
in the sector =2 5

We can summarize the relative magnitudes of the changes in the value of innovations in

response to changes in demand as follows:

vy _ ovi vy _ovd
o8 ~ 9B’ 98 ~ op

Since in a two-sector model, a demand expansion in one sector implies a relative demand
contraction in the other, the responses of innovation incentives to a positive demand shift in

sector S (a fall in ) follows directly from above:

vy _ _ovp ovy¥  ovd
o1—-p) o01-p)o1-p)" o(1-p)

Because entrepreneurs’ wages in a given sector-innovation cell are equal to the value of the
innovations they create intermediates for (wj" = V;™), and since Al; = E] and AN; = EV,

we obtain that

OANy o 9AIy OANy  _ OAly
aB a8 7 o(1-p) 0(1-8)
OANs _ OALg OANs - AL
aB o8 7 0(1-B) o(1-p)’

which corresponds to our proposition.
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Supplemental Appendix

I Individual-level employment in new titles using 1940 Census

Complete Count data

Comparison of occupational new title shares with individual-level employment
in new work

Because we do not observe individual workers employed in new and preexisting micro occu-
pation titles, we use occupational new title shares to approximate employment in new work
in section 2.2. In this supplemental appendix, we apply 1940 Census Complete Count data
to document that occupational new title shares are informative about the occupational dis-
tribution of individual-level employment in new work. We stress that our primary analyses
predicting both the emergence of new titles and innovation-induced shifts in occupational
labor demand do not make any assumptions about the number of workers employed in new
versus preexisting titles. Thus, the exercise here is primarily relevant for calibrating the
relationship between emergence of new titles and the count of workers employed in these
titles.

We use individual-level data from the 1940 Census Complete Count (CCC) file, where
workers’ self-reported job titles are unmasked and keyed, to compare new title shares and
observed employment in new work. Unsurprisingly, self-reported titles are frequently vague
or so replete with misspellings as to be indecipherable. By implementing a combination of
fuzzy-matching and term-frequency-inverse-document-frequency (TF-IDF) techniques, we
are nevertheless able to link the self-reported job titles of 84% of employed, working age
individuals in the 1940 Census to listed micro-titles in the 1940 Census Alphabetical Index.
Overall, 81% of micro-titles in the Census Alphabetical Index are linked to at least one
CCC worker.*® To obtain the share of workers employed in new titles in each occupation, we
aggregate individual employment counts in matched occupation titles to the ‘macro’ (3-digit)
occupation level.

Figure A10 reports a pair of scatter plots showing the relationships between occupations’
new title shares (x-axis) and observed employment in new titles in those occupations. In
the left-hand panel, the new work employment measure is the count of workers in new titles

divided by total occupational employment. The relationship between new title shares and

48Since obsolete titles are retained in the CAI, we would not expect 100% of extant 1940 titles to be populated.
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new work employment shares is positive and highly significant with a slope of 0.229 and a
p-value below 0.01. The right-hand panel replaces the new work share measure with the
rank of that measure. The coefficient on the new title share measure rises from 0.229 to
0.782 in this specification, and the fit of the regression is much tighter (the R? value is 0.115
in the first panel and 0.615 in the second).?® It bears note that our analyses relating new
title emergence to both augmentation and automation innovations and to demand shifts
(section 4) leverages this ordinal variation since the dependent variable in these exercises
is the (transformed) count of new titles in an occupation rather the number of workers

employed in new titles in an occupation.

Figure A10: Comparison of New Title Shares and Employment in New Work, 1940

NewEmpl = 0.002 + 0.229 Newtitles NewEmpl = 24.653 + 0.782 Newtitles

R% 0.11 R* 0.62

200
|

150
|

100
|
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|

Share of Employment in New Titles

Share of Employment in New Titles (Rank)

T T T
50 100 150 200

New Title Share New Title Share (Rank)

N = 225 1940 3-digit Census occupations. The left panel shows the relationship between the share
of new titles in a 3-digit (‘macro’) occupation and the share of employment in new titles in that
occupation in 1940. The right panel replaces the new work share measure with the rank of that
measure, where the lowest rank represents the occupation with the lowest share.

While the slope in the left panel of Figure A10 suggests that employment in new titles is
substantially lower than employment in existing titles, there are at least two sources of bias

that may generate an underestimate of the employment count in new titles. First, new titles

49These relationships, particularly in the rank-based specification, are partially driven by occupations with
no new micro-occupation titles, which always have zero employment in new titles by definition. Limiting
the sample to occupations with positive new title shares decreases the coefficient and R? values to 0.511
and 0.24 respectively in the rank specification.
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often represent the specialization of an existing title. In these cases, Census respondents
who are employed in specialized fields may choose to report the more general version of their
occupation, while workers with broad occupational responsibilities are unlikely to report
specialized occupations. Second, new titles appear to be more difficult to link to Census
write-ins than existing titles, likely as a result of new titles being more specialized and thus
more specific. Concretely, we find that respondents with write-in titles that match exactly
to titles in the CAI have lower rates of employment in new titles than workers matched to
the CAI using more flexible matching procedures. This leads us to suspect that the true rate
of employment in new titles exceeds the employment shares depicted in the left-hand panel
of Figure A10.

Characteristics of workers employed in new work and existing work in 1940

We next use the occupational write-in data in the Census Complete Count file to consider
whether workers employed in new work in 1940 were more educated than and earned a wage
premium relative to workers employed in preexisting titles, as we would expect if new work
demands scarce expertise. Among workers who are matched to an occupation title from the
1940 Census Alphabetical Index, 1.42% are employed in titles that newly emerged between
1930 and 1940. Appendix table A10 reports the most frequent of these new titles by broad
education group. New titles requiring advanced certifications, such as “petroleum engineer”
or “patent attorney”, are primarily held by those with college degrees. Less-credential new
titles such as “foreman” and “driver salesman” are prevalent among multiple education
groups.

Appendix Table A1l regresses an indicator variable for employment in a new title on
education and earnings levels (with “no” coded as 0 and “yes” coded as 100). Column 1
shows that workers with higher earnings are more likely to be employed in new work: a
$1,000 increment to earnings (around 70% of a standard deviation) is associated with a
0.185 percentage point (13%) higher probability of being employed in a new occupation
title (0.13 = 0.185/1.42). Column 2 shows that this relationship is not primarily driven
by new titles emerging in high-paid occupations. Adding a complete set of 3-digit macro
occupation fixed effects reduces the point estimate on the individual earnings measure from
0.185 to 0.112. By implication, 60% of the earnings-new-work gradient stems from the higher
earnings of workers in new versus preexisting titles in the same 3-digit occupations.

The next two columns of Appendix Table A1l explore whether better-educated work-
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ers are more likely to be employed in new titles, potentially reflecting greater demand for
expertise. The data clearly support this conjecture. Relative to workers with less than a
9th grade education, better-educated workers are between 0.10 percentage points (college-
educated) and 0.45 percentage points (high school-educated) more likely to be employed in
new work. (Recall that the overall base rate is 1.42%, so these are large effects.) The fact
that new work is most commonplace among middle-educated workers reinforces the find-
ing in Appendix Figure A2 above that new work predominantly emerged in middle-skilled
(production and clerical) occupations in the first decades of our sample. When 3-digit oc-
cupational dummies are added to the model (column 4), the probability of employment in
new work becomes strongly positively monotone in educational attainment. Thus, although
middle-educated workers were most likely to be employed in new titles in 1940, among work-
ers employed in the same macro occupations, better-educated workers were uniformly more
likely to hold new titles than their less-educated counterparts.

We probe the robustness of earnings and educational attainment as simultaneous predic-
tors of employment in new work in column 5, while controlling for workers’ age, sex, race,
geography, and 3-digit occupation. Accounting for these many covariates has surprisingly
little impact on the coefficients of interest: a $1,000 increment to earnings predicts a 0.095
percentage point (6.7%) greater likelihood of employment in new work (0.67 = 0.095/1.42);
and the probability of employment in new work remains strongly monotonically increasing in
educational attainment, with comparable coefficients to those in the prior column. Relative
to workers with a less than a 9th grade education, high school graduate and college graduate
workers are 23.9% (= 0.34/1.42) and 32.7% (= 0.46/1.42) more likely to be employed in new
work.

In summary, workers employed in new work are more educated and higher-paid—even
conditional on education—than workers employed in preexisting titles in the same detailed
occupational categories. This pattern suggests that new work may be more skilled, special-

ized, and potentially better-remunerated than preexisting work.
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Table A10: Most Common New Titles by Education Level

Rank Less Than 9th Grade High School At Least Some College
1 c.c.c. foreman driver salesman druggist pharmacist
2 driver salesman c.c.c. foreman c.c.c. foreman

3 pattern maker letterer carrier driver salesman

4 letterer carrier pattern maker job interviewer

5 metal finisher accounting clerk petroleum engineer
6 route salesman recreation attendant naval official

7 c.c.c. worker druggist pharmacist accounting clerk

8 share cropper route salesman research work or worker
9 spot welder nurse aid patent attorney

10 grader operator helper chemist research clerk

C.C.C. stands for Civilian Conservation Corps, a voluntary government work relief program that ran from
1933 to 1942.
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Table A11: Earnings and Education Level for Workers in New vs. Preexisting Titles

Dependent variable: 100 x Dummy for being employed in new work

(1) (2) (3) (4) (5)
Earnings (in $1,000’s)  0.185"* 0.112%% 0.095**
(0.001) (0.002) (0.002)

Education level (Reference category: Less than 9th grade education)

Some high school 0.450*** 0.245%* 0.233***
(0.007) (0.006) (0.007)
High school 0.211** 0.334*** 0.339***
(0.006) (0.007) (0.007)
Some college 0.298*** 0.541** 0.495***
(0.010) (0.010) (0.011)
College 0.100*** 0.561*** 0.464***
(0.010) (0.012) (0.012)
N 28,660,196 28,660,196 27,465,390 27,465,390 27,465,390
R? 0.001 0.130 0.0002 0.131 0.132
Occupation FE X X X
Full Controls X

Linear probability models, robust standard errors reported in parentheses. Education estimates compare the probability
of employment in new work with workers who have less than a 9th grade education level. Columns 3, 4, and 5 only
include observations for workers who are > 25 years old with reported education. Column 5 includes controls for
occupation, age, sex, race, state, and urban/rural status. Earnings measured in thousands in 1940 dollars. Sample
includes employed working-age individuals with non-zero reported income who have worked at least one week in the
previous year.

Tp < 0.10, *p < 0.05, **p < 0.01, ***p < 0.001
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