
Intermediation Frictions in Equity Markets

Bryan Seegmiller∗

March 2025

Abstract

Stocks with similar characteristics but different levels of ownership by financial in-

stitutions have returns and risk premia that comove very differently with shocks to

the risk-bearing capacity of dealer banks. After observable stock characteristics are

accounted for, excess returns on more intermediated stocks have higher betas on con-

temporaneous shocks to intermediary willingness to take risk and are more predictable

by state variables that proxy for intermediary health. Intermediary risk-bearing capac-

ity also explains a substantial and increasing fraction of the variation in conditional risk

premia for portfolios sorted on intermediation. These effects are concentrated in stocks

held by hedge funds or mutual fund investors who are more likely to be exposed to

dealer banks. The empirical evidence supports the predictions of asset pricing models

in which financial intermediaries are marginal investors but face frictions that induce

changes in their risk-bearing capacity. This suggests that these models are useful in

explaining price movements not only in markets for complex financial assets but also in

asset classes in which households face comparatively low barriers to direct participation.
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1 Introduction

Recent empirical evidence has confirmed many predictions of asset pricing models fea-

turing frictions and sophisticated financial intermediaries as the primary marginal investors.

This has been particularly true for complex asset classes, which are more difficult for house-

holds to access (Eisfeldt, Lustig, and Zhang, 2023).1 Empirical measures based on theories of

frictional intermediary-based asset pricing models have connected the health of the financial

sector to security broker-dealers (Adrian, Etula, and Muir, 2014) and Federal Reserve pri-

mary dealer banks (He, Kelly, and Manela, 2017), each with considerable success in pricing

diverse cross sections of assets. However, as both Adrian et al. (2014) and He et al. (2017)

point out, because of the relative ease of household stock market participation, the compar-

ative importance of these models and their empirical proxies in actually causing stock price

movements remains unclear. Despite the success of such intermediary-based empirical asset

pricing models in explaining cross sections of returns on stocks and other asset classes, such

tests cannot rule out that a household-based pricing kernel also holds for stocks because

households also participate heavily in equity markets, both directly and indirectly, alongside

financial institutions.

When households and institutional investors have differential preferences for direct hold-

ing of certain stocks for any reason unrelated to the true distributions of future cashflows,

whether because of heterogeneous beliefs or differential trading costs, intermediation disper-

sion independent of asset fundamentals can arise naturally in the cross section of equities

even when households are not prevented from trading directly. This dispersion causes en-

dogenous segmentation within the equity asset class rather than between equities and, say,

credit defaults swaps or collateralized debt obligations. Accordingly, the types of empirical

tests that have been used to detect a causal role for intermediary frictions in explaining asset

price movements for complex assets can also be applied to detect their importance within

equity markets—the single asset class where intermediaries seem likeliest to act as a veil that

simply passes on household preference. The basic prediction is that for two otherwise similar

assets, the more intermediated asset exhibits a larger contemporaneous price response and

variation in conditional risk premia due to shifts in intermediary risk-bearing capacity.

I find evidence strongly in support of this prediction within the equity asset class. After

firm characteristics are accounted for, excess returns on stocks that are held more intensively

1These markets include those for credit default swaps (Siriwardane, 2019; Mitchell and Pulvino, 2012),
mortgage-backed securities (Krishnamurthy, 2010; Gabaix, Krishnamurthy, and Vigneron, 2007; Diep, Eis-
feldt, and Richardson, 2021), foreign exchange (Du, Tepper, and Verdelhan, 2018; Du, Hébert, and Huber,
2022), convertible bonds (Mitchell, Pedersen, and Pulvino, 2007), corporate bonds (He, Khorrami, and Song,
2022), life insurance (Koijen and Yogo, 2015), and even treasuries (Haddad and Sraer, 2018; Anderson and
Liu, 2018), to name just a few examples.
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by the largest and most active institutional investors in equity markets (mutual funds, hedge

funds, and other investment advisors) covary more with theoretically motivated empirical

proxies for shocks that shift intermediary sector risk-bearing capacity due to financial fric-

tions. This finding holds for both portfolios and individual stocks and in terms of both the

amount of contemporaneous return comovement and relative ex ante return predictability.

My main empirical proxy for financial sector frictions combines two influential empirical

measures of shocks to an intermediary sector marginal utility proposed in the literature:

Adrian et al. (2014) propose shocks to broker-dealer book leverage, while He et al. (2017)

use shocks to the market equity capital ratio of Federal Reserve primary dealer bank holding

companies. The former is a proxy for models of margin constraints that become more binding

during a liquidity crisis (Brunnermeier and Pedersen, 2008; Adrian and Boyarchenko, 2012),

while the latter captures the effects of models where a “skin-in-the-game” equity constraint

due to a moral hazard problem leads to elevated risk premia in times of distress (He and

Krishnamurthy, 2012, 2013; Brunnermeier and Sannikov, 2014). I simply standardize both

of these measures and take the average of the two, similarly to Haddad and Muir (2021), to

capture a powerful composite measure of shocks to the financial sector.

I find that stocks sorted on a measure of intermediation that holds stock fundamentals

constant have monotonically increasing contemporaneous comovement with my measure of

intermediary capital shocks: A one-standard-deviation positive shock to my combined in-

termediary factor increases the returns for stocks in the top-quintile portfolio of my inter-

mediation measure by approximately 5.2% (annualized) but by only 1.1% for those in the

lowest-quintile portfolio. The t-statistic on the spread in return responses between the top

and bottom portfolios is 5.51, and there is a monotonic increase in stock return responses as

intensity of intermediary holdings increases across all portfolios.

I further include tests with the He et al. (2017) and Adrian et al. (2014) measures sepa-

rately and show that both independently yield essentially the same monotonic sorting pat-

terns of increased comovement as intermediation rises, despite not being highly correlated

with one another. An additional theoretically motivated credible proxy for shocks to fi-

nancial sector risk-bearing capacity—the excess return on the financial sector—also displays

the same empirical pattern of increased stock return exposure to shocks to intermediary

risk-bearing capacity along the dimension of increased intermediation.

Supporting my baseline portfolio-level analysis of contemporaneous comovement, I also

utilize a natural experiment from S&P 500 membership to test how stock comovement with

the He et al. (2017) intermediary capital factor changes before and after index inclusion.

Echoing prior work (Aghion, Van Reenen, and Zingales, 2013; Boller and Scott Morton,

2020), I confirm that institutional holdings rise significantly between the quarter before and
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the quarter after index inclusion. Stocks recently added to the S&P 500 experience a large

and highly statistically significant increase in their betas on the He et al. (2017) intermediary

capital factor relative to comparison stocks in the time period, corroborating my findings

that otherwise similar stocks that institutions tend to hold more heavily also covary more

with shocks to the capitalization of key intermediaries.

Tests of ex ante stock return predictability further reveal that discount rates on highly

intermediated stocks respond more to changes in intermediary risk-bearing capacity, which

is a fundamental feature of intermediary asset pricing models with some degree of market

segmentation. This basic mechanism is inspired by numerous papers from the intermediary

asset pricing literature.2 A state variable that proxies for current financial sector constraints

predicts larger ex ante risk premia for otherwise similar stocks that are more intermediated. I

combine information from two state variables in my predictability tests: the squared market

leverage ratio of Federal Reserve primary dealer bank holding companies and the level of

the book leverage ratio of broker-dealers obtained from the flow-of-funds account. I again

take the average of the standardized versions of these two ex ante state variables as my

main proxy for intermediary risk aversion at the current date.3 These measures perform in

accordance with theory when included separately, and another theoretically motivated proxy

for financial sector health—the financial sector stock market wealth share—also predicts

returns more strongly among more intermediated stocks.

In my return predictability tests, I control for potential variation in conditional risk pre-

mia coming from sources outside of the intermediaries’ health by constructing a powerful

composite conditional risk premium proxy using the joint information found in a host of

return predictor variables discovered in the literature. I do this following Kelly and Pruitt

(2013) and Huang, Jiang, Tu, and Zhou (2014) in using partial least squares (PLS) to

aggregate the information in many individual variables into the components most informa-

tive about future aggregate stock returns. Using this control to bound the share of total

predictability that can be attributed directly to intermediaries, intermediary risk-bearing

capacity proves to be a strong predictor of conditional risk premia in general: My proxy for

the (lack of) current intermediary risk-bearing capacity predicts between 23% and 44% of

2Such implications are discussed in more detail in section 2, where I present a simple model in which
intermediary risk tolerance can shift because of shocks to some underlying state variables (implicitly because
they cause financial constraints on intermediaries to be more binding).

3As He et al. (2017) point out, their model implies that squared primary dealer leverage is a predictor of
stock returns, while the theoretical motivation for the Adrian et al. (2014) measure implies that the level of
broker-dealer leverage is a state variable that should also predict returns. The different particular theoretical
motivations imply that these two state variables should predict stock market returns with opposite sign.
Hence, when I take the average, I use the negative of the broker-dealer leverage ratio so that the composite
measure predicts returns with a positive sign.
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the variation in the conditional equity risk premium for the least intermediated portfolio,

between 38% and 59% for the most intermediated portfolio, and nearly the entirety of the

relative risk premium variation between the two portfolios. The share of risk premia vari-

ation coming from intermediary risk aversion is also monotonically increasing from low- to

high-intermediation portfolios. Previous work (Haddad and Muir, 2021) finds that a large

portion of the return predictability in equity markets cannot be directly attributed to either

households or intermediaries; my estimates suggest that the bulk of this unexplained varia-

tion in fact comes from changes in the risk-bearing capacity of central financial institutions.

My predictability tests also relate to work by Weber (2023), who finds that stocks with more

institutional ownership have more time-series predictability by price–dividend ratios; I differ

by connecting the relative time-series predictability of intermediated portfolios directly to

a measure of time-varying financial sector risk-bearing capacity and demonstrate that this

measure has considerable incremental information for the relative return predictability of

highly intermediated assets over a composite of many powerful return predictor variables.

I include an additional test confirming a feature in the cross section of return pre-

dictability that is consistent with theory, though it is not explicitly laid out in my styl-

ized static model. I find that the predictability for the return spread between high- and

low-intermediation portfolios is positive but declining with the time horizon of the monthly

returns being predicted and the R2 is also decreasing with the time horizon. This suggests

shocks to intermediaries induce temporary distortions in relative discount rates between

more and less intermediated stocks, with such distortions reverting over time as intermedi-

ary capital recovers. This is consistent with theoretical mechanisms highlighted in Duffie

(2010) and Gromb and Vayanos (2018), for example.

The proxies for intermediary risk tolerance shocks proposed by He et al. (2017) and

Adrian et al. (2014) focus on a particularly influential set of levered institutions—namely,

dealer banks and other broker-dealers—that have been argued in the literature to occupy a

place of central importance in financial markets and as marginal investors in pricing numerous

asset classes; however, they are not necessarily the set of institutions most directly active

in equity markets and so are not the exact same set of institutions whose stock holdings I

capture using 13F data (though there is some overlap via internal capital markets). Hence,

the empirical evidence I present in section 4 implies that shocks to dealer banks and broker-

dealers pass through to the risk-bearing capacity of the mutual funds, hedge funds, and other

investment advisors whose stock holdings are the focus of my analysis.

In section 5.1, I show that my findings concentrate in the subset of institutional investors

whose fortunes are likeliest to be interlinked with those of dealer banks and broker-dealers.

In particular, these patterns are especially evident when I restrict the analysis to hedge
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funds using a list of 13F hedge fund managers.4 They are also prominent for mutual funds

and non–hedge fund investment advisors, but only when they are exposed indirectly via

interactions with dealer-exposed hedge funds in equity markets, or when they also invest in

bond markets where dealer banks play an especially prominent direct intermediation role (as

established by Haddad and Muir (2021); He et al. (2022); Li and Xu (2024), for example).

Since dealer banks play a key role in the direct provision of funding liquidity, shocks

to dealer banks’ capitalization can lead to dry-ups in market liquidity among more inter-

mediated stocks.5 Consistent with this mechanism, I also show in section 5.2 that positive

shocks to dealer banks and broker-dealers’ risk-bearing capacity predict larger improvements

in average stock-level liquidity (as measured by the Amihud (2002) illiquidity index) among

highly intermediated stocks, but again only for the subset of hedge funds, mutual funds,

and investment advisors whose fortunes are likeliest to be interlinked with those of dealer

banks/broker-dealers.

A prior literature documents the importance of non-fundamental pressure driven by mu-

tual fund flows (Coval and Stafford, 2007; Lou, 2012; Frazzini and Lamont, 2008; Dou, Kogan,

and Wu, 2023). The intermediary mechanisms I focus on in this paper are distinct from these

fund flow channels, which I demonstrate by showing in section 5.3 that common shocks to

mutual fund flows from Dou et al. (2023) can say little about the relative price movements

of portfolios sorted on intermediation and controlling for them has no effect on my findings.

Instead, my estimates are consistent with models where central financial intermediaries face

capital and funding constraints that transmit across financial markets to cause movements in

asset prices. While evidence for such mechanisms has been readily demonstrated in complex

asset markets (as I detail later in the literature review), a primary contribution of this paper

is to demonstrate how these frictions also spill over to generate differential price movements

in equity markets—perhaps the least intermediated asset class (Haddad and Muir, 2021).

I explain the theoretical backdrop to my empirical strategy in a simple economic setting

introduced in section 2. The model shows that if households are relatively more willing to

hold one asset for any reason unrelated to the true distribution of cash flows, assets that are

less preferred by households become more intermediated and have risk premia that respond

more to shocks to the intermediaries’ risk tolerance. In my setting, this increased interme-

diary willingness to hold certain assets arises because households either have heterogeneous

expectations errors or view direct investing in certain assets as relatively more or less costly.

4This list of hedge fund managers has been used in a series of papers studying risks and return patterns in
hedge fund holdings, including Agarwal, Ruenzi, and Weigert (2024) Agarwal, Ruenzi, and Weigert (2017),
Agarwal, Fos, and Jiang (2013), and Agarwal, Jiang, Tang, and Yang (2013). I thank Vikas Agarwal for
generously sharing these data.

5See Brunnermeier and Pedersen (2008) for a discussion of such liquidity spirals.
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The empirical implication is that relatively more intermediated assets that are similar on

fundamentals should have prices that move more with contemporaneous intermediary shocks

and possess time-varying risk premia that are relatively more predictable by state variables

representing intermediary risk tolerance.

The paper proceeds as follows: In section 2, I detail my stylized model; in section 3, I

describe the data and sampling criteria. In section 4, I detail my empirical strategy and

present my empirical findings. Specifically, in subsection 4.1, I explain in more detail the

construction of my stock-level intermediation measure and why the intermediary shocks

suggested by He et al. (2017) and Adrian et al. (2014) can be considered proxies for changes

in financial risk-bearing capacity; in sections 4.2 through 4.5, I present my main empirical

estimates, including those from my portfolio- and stock-level analysis and robustness checks.

Section 5 explores the mechanisms driving my empirical findings; finally, section 6 provides

some short concluding remarks. Before proceeding with all of the above, I briefly provide

more detail on the related literature and my paper’s contributions.

1.1 Related Literature

Cross-sectional and time-series asset pricing tests find a role for intermediaries in explaining

variation in expected returns.6 In the most related prior work, Haddad and Muir (2021)

point out that these tests are not sufficient to establish a unique causal role for moving

prices, and they construct empirical tests designed to detect whether intermediaries matter

for asset price movements or if they act merely as a veil in passing on household preferences.

Their estimates imply that intermediation frictions do matter, especially in credit default

swap, foreign exchange, commodities, and sovereign bond markets. On the other hand, they

argue that equities are the asset class for which price movements coming from intermediation

frictions are least likely to be detected (while the authors are clear that they also cannot rule

this out). Relative to the approach of Haddad and Muir (2021), who focus on the relative

time-series predictability of proxies for intermediary frictions across asset classes, my model

and empirical approach emphasize the duality of contemporaneous comovement and time-

series predictability in establishing a role for intermediaries for moving prices within an asset

class. In doing so, I uncover a prominent role for intermediaries in equity markets and thus

directly complement and add to their cross–asset class comparisons.

Others in the intermediary asset pricing literature have also expressed skepticism about

the relevance of these theories in explaining price movements in equity markets. While He

et al. (2017) find that their proxy for a representative intermediary stochastic discount factor

6See Adrian et al. (2014), He et al. (2017), Kargar (2021), and Ma (2017) for cross-sectional tests and
Muir (2017) and Chen, Joslin, and Ni (2018) for evidence on time-series predictability.
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performs reasonably well in describing cross sections of equity returns, they also argue that

equity may be the asset class where intermediaries may act as a veil in merely passing through

the preferences of households in equity markets. Similarly, in the theoretical literature, He

and Krishnamurthy (2013) think of their model in the context of complex asset markets

such as mortgage-backed securities as opposed to equities. While Koijen and Yogo (2019)

estimate a characteristics-based demand system for heterogeneous financial intermediaries

in equity markets, they do not attempt to test how their findings relate to friction-based

intermediary asset pricing.7

In a related paper, Cho (2020) finds that anomaly portfolios with a higher arbitrage

position (determined by abnormally high/low short interest in a stock) also have higher betas

on shocks to the Adrian et al. (2014) leverage factor in the post-1993 period when hedge

funds became more active in equity markets. I also focus on equity markets, but I consider

the holdings of a much larger class of financial institutions and for multiple definitions of

intermediary shocks, analyze effects at both the portfolio and individual stock levels, and

include contemporaneous and predictive tests using shocks to and levels of the state variables

implied by intermediary asset pricing models.

While Cho (2020) contextualizes his findings within the Kondor and Vayanos (2019)

setting of minimal frictions, I prefer the friction-based interpretation since the empirical

measures proposed by Adrian et al. (2014) and He et al. (2017) are constructed to proxy

for mechanisms outlined in friction-based models—Brunnermeier and Pedersen (2008) and

Adrian and Boyarchenko (2012) in the case of Adrian et al. (2014) and He and Krishnamurthy

(2013) and Brunnermeier and Sannikov (2014) in the case of He et al. (2017). In Adrian

et al. (2014), the underlying friction comes from time-varying margin constraints, while in

He et al. (2017), the friction entails an equity capital constraint imposed by investors on the

equity of the intermediary because of moral hazard problems in delegation to professional

asset managers. These frictions naturally lead to time-varying intermediary risk-bearing

capacity, which is the key mechanism I focus on in my model to derive the predictions that

I test in the data.

In addition to its primary connection with the theoretical and empirical literature in

intermediary asset pricing, this paper has connections with research areas such as the limits

to arbitrage (Shleifer and Vishny, 1997; Duffie, 2010), the effects of institutional ownership on

asset prices (Gompers and Metrick, 2001; Nagel, 2005; Basak and Pavlova, 2013), and other

sources of nonfundamental price pressure such as mutual fund flows (Coval and Stafford,

2007; Frazzini and Lamont, 2008; Lou, 2012). These papers all deal with price dislocations

7I draw from the set of stock characteristics that they use to create my primary measure of stock-level
intermediation (as detailed in section 4).
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due to institutional features that allow the direction of trading or asset holding to move

prices even absent fundamental information. Relative to prior work in these research areas,

my finding that shocks to broker-dealers and dealer banks cause larger price movements

among more intermediated stocks is a distinctly new mechanism.

2 Economic Framework for Empirical Tests

Theories linking asset price movements to intermediary health are broadly divided into

equity constraint models where financial constraints bind when intermediaries’ net worth is

low8 and another a class of models where constraints explicitly limit the amount of leverage

or risk that intermediaries can take on.9 To set the stage for my empirical tests, I present a

simple model that takes the middle ground between these two broad classes of intermediary

asset pricing models by allowing risk-bearing capacity to vary because of underlying state

variables, which could be proxies for net worth shocks or changes in leverage/margin con-

straints. The intended interpretation is that these shifts in willingness to take on risk come

from constraints that exist because of underlying agency frictions in delegation to interme-

diaries, which is a unifying theme in these models. The intuition and consequent empirical

implications in this section draw from the models of He and Krishnamurthy (2018), Haddad

and Muir (2021), and Koijen and Yogo (2019).

Here, I present a simple economic setting that leads to the empirical specification for

the residual intermediation measure that I use to form portfolios and delivers clear pre-

dictions about differential asset price responses to intermediary shocks across these portfo-

lios. As in He and Krishnamurthy (2018), Kondor and Vayanos (2019), Haddad and Muir

(2021), Koijen, Richmond, and Yogo (2023), and He et al. (2022), agents have mean–variance

preferences in final wealth, arising here from constant absolute risk aversion utility and

normally distributed asset payoffs. There are two investors, a representative institutional

investor/intermediary and a representative household, indexed by I and H, respectively.

Intermediaries and households have respective risk tolerance ρI and ρH , which may be de-

pendent on current state variables—for example, intermediary asset pricing models suggest

that ρI should be increasing in intermediary wealth and decreasing in Lagrange multipliers

on leverage, value-at-risk, or margin constraints.10 While I follow suit by modeling ρI to

8See Bernanke and Gertler (1989) and Holmstrom and Tirole (1997) for early examples and Brunnermeier
and Sannikov (2014) and He and Krishnamurthy (2013) for more recent works.

9Examples from this literature include Brunnermeier and Pedersen (2008), Adrian and Shin (2014), and
Gârleanu, Panageas, and Yu. (2015).

10Additionally, as Koijen et al. (2023) and Makarov and Schornick (2010) explain, parameterizing agents’
risk tolerances to be dependent on their initial wealth is particularly useful since it preserves the tractability
of a setting with constant absolute risk aversion (CARA) preferences and normally distributed returns while
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be dependent on intermediary wealth and other constraints, for expositional convenience, I

initially suppress this dependence in my notation; I return to this idea later on.

There are N assets in net supply normalized to 1, whose cashflows are distributed mul-

tivariate normal, D ∼ N(µ,Σ). Similarly to Koijen and Yogo (2019) , I assume that Σ can

be decomposed as Σ = ββ′ + λ2I, where β contains asset factor loadings, λ2 is idiosyncratic

variance, and β is of dimension N × 1. There is also a risk-free asset whose gross return Rf

is fixed exogenously. Let X be a N × k matrix of stock characteristics. The representative

household and institutional investor agree that

β = XΠ+ π

, where Π is a k × 1 vector and π is a constant N × 1 vector. Hence, fundamental loadings

β are affine in characteristics.11

Now, assume that µ is linear in characteristics but that households and institutional

investors may disagree on the mapping from characteristics to µ in the following manner.

Households believe that the mean µ follows

µH = XΦH + ϕH + ϵH (1)

while institutional investors’ estimate of the mean µ is given by

µI = XΦI + ϕI (2)

Here, ϕH and ϕI are constant across assets, and ϵH may differ across assets. The residual

ϵH is the component of households’ beliefs about the mean of the asset payoff distribution

that are uncorrelated with the asset characteristics (in the sense that ϵH
′X = 0, with 0 a

k-vector of zeros) and could be a stand-in for expectations errors or real or perceived costs

of trading an asset. Adding an intermediary error vector ϵI in (2) would yield all the same

key equilibrium expressions, except with ϵH replaced by ϵH − ϵI ; thus, my choice to place

the error vector on the household side is without loss of generality.

also allowing investment in risky assets to be wealth dependent. Moreover, He et al. (2022) allow risk aversion
to depend on intermediary wealth in a setting with mean–variance preferences to capture the effects of net
worth constraints, while Haddad and Muir (2021) think of intermediary risk aversion as being dependent on
net worth or leverage constraints in a setting with CARA preferences and normally distributed payoffs.

11Since any multifactor model of payoffs/returns implies a single-factor model where the stochastic dis-
count factor (SDF) is the lone factor, this essentially assumes that loadings on the SDF are affine in charac-
teristics.
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Given constant absolute risk aversion utility, the optimal demand for agent j is

θj = ρjΣ
−1(µj −RfP )

Imposing market clearing (θI + θH = 1) gives the following expression for prices:

P =
ρIµI + ρHµH − Σ1

Rf (ρI + ρH)
(3)

Substituting out price using market clearing gives the following for intermediary demand (or

percentage intermediated):

θI = ρIΣ
−1

[
ρH(µI − µH) + Σ1

ρI + ρH

]

= α
(
ββ′ + λ2I

)−1
(X∆Φ+∆ϕ− ϵH) + δ1

=
α

λ2

(
I +

1

κ
ββ′
)
(X∆Φ+∆ϕ− ϵH) + δ1

=
α

λ2
(X∆Φ+∆ϕ− ϵH + (XΠ+ π)η) + δ1

=
α

λ2
(∆ϕ+ πη) + δ1+X

α

λ2
(∆Φ + Πη)− α

λ2
ϵH

≡ a+XB + ϵ̃ (4)

where the terms in the above are defined as follows:

α =
ρIρH
ρI + ρH

, δ =
ρI

ρI + ρH
, κ = −(λ2 + β′β),

∆Φ = ΦI − ΦH , ∆ϕ = ϕI − ϕH , η =
1

κ
β′(X∆Φ+∆ϕ− ϵH),

B =
α

λ2
(Πη +∆Φ), a =

α

λ2
(∆ϕ+ πη) + δ1, and ϵ̃ = − α

λ2
ϵH

The relation between the second and third lines follows from the Woodbury matrix identity

and then simplifying. The constant η is obtained by multiplying β by X and ϵH , the current

characteristics of all assets and the residual component of the households’ estimate of the

mean for all assets.

I now show that, under the assumptions above, the residual ϵ̃ recovers a component of

intermediary demand along which the price response to intermediary risk tolerance shocks
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is strictly increasing. Returning to the equation for prices,

P =
ρIµI + ρHµH − Σ1

Rf (ρI + ρH)

=
ρI(ω)(XΦI + ϕI) + ρH(ζ)(XΦH + ϕH + ϵH)− Σ1

Rf (ρI(ω) + ρH(ζ))

(5)

Now, I let ρI depend on the state variable ω and ρH on the state variable ζ. Here, ω proxies

for an empirical measure of shocks to financial intermediaries that moves ρI in practice, as in

the classes of intermediary asset pricing models discussed at the start of this section; I also

allow some state variable ζ to move the household risk tolerance (for example, because of

time-varying risk aversion). I assume that ρ
′
I(ω) > 0, so that an increase in ω increases risk

tolerance (i.e., proxies for constraints becoming less binding); similarly, I assume ρ
′
H(ζ) > 0.

We can then take the total derivative of asset price changes with respect to a local shock to

these variables. This leads to the first key proposition from the model:

Proposition 1 Suppose ρ
′
I(ω) > 0. Then, the component of the total derivative dp due to

changes in ω, βω, is strictly increasing in ϵ̃.

Taking the total derivative immediately yields 1:

dP =
ρ

′
I(ω)ρH(ζ) [∆ΦX +∆ϕ− ϵH ] + ρ

′
I(ω)Σ1

Rf (ρI(ω) + ρH(ζ))2
dω

+
ρ

′
H(ζ)ρI(ω) [−∆ΦX −∆ϕ+ ϵH ] + ρ

′
H(ζ)Σ1

Rf (ρI(ω) + ρH(ζ))2
dζ

≡ βωdω + βζdζ

(6)

Since ρ
′
I(ω) > 0, the expression for βω in (6) is strictly decreasing in ϵH or, equivalently, is

strictly increasing in ϵ̃ = − α
λ2 ϵH .

Note that (6) resembles a regression of the local change in stock price (“stock return”

for a CARA investor) on shocks to ω and ζ. In other words, proposition 1 implies that the

beta on a shock that increases (decreases) the intermediaries’ risk tolerance is increasing

(decreasing) in the percentage intermediated. This is emphasized by He and Krishnamurthy

(2018) and is the first theoretical implication that I test in the data.

This setting also delivers differential conditional return predictability for high ϵH assets,

which is the second proposition. Define the risk premium on asset k by E[Rp,k] = µk−RfPk,

and suppose that for two assets X1 = X2 so that the asset characteristics are the same but
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ϵH,1 < ϵH,2 (or, equivalently, ϵ̃1 > ϵ̃2 so that asset 1 is more intermediated). Then,

E[Rp,1 −Rp,2] =
ρH(ζ)(ϵH,2 − ϵH,1))

Rf (ρI(ω) + ρH(ζ))
(7)

which is strictly decreasing in ω. This leads to the second proposition of the model:

Proposition 2 Consider assets 1 and 2 such that X1 = X2 while ϵ̃1 > ϵ̃2. Let E[Rp,k] =

µk −RfPk denote the risk premium on asset k. Then, the difference in the risk premium on

asset 1 and asset 2 decreases with ω, i.e., ∂E[Rp,1 −Rp,2]/∂ω < 0.

Hence, after differences in characteristics are netted out, the difference in conditional ex-

pected returns for high- and low-intermediated assets decreases when intermediaries are

more risk tolerant, as in proposition 2, implying that empirical proxies for current interme-

diary risk tolerance should negatively predict the return spread between high- and low-ϵi,t

assets—or equivalently, as in my primary empirical implementation, state variables that

cause intermediaries to be less risk tolerant should cause the risk premium on the high ϵ̃

asset to rise.

Appendix B examines an extension of the model where household risk tolerance also re-

sponds in the same direction as intermediary risk tolerance does to shocks to the intermediary

state variable(s) ω. This extension leads to a third proposition:

Proposition 3 Suppose that household risk tolerance is also a function of the same state

variable(s) ω as intermediary risk tolerance and that the partial derivative of ρH(ω, ζ) with

respect to ω is positive. Then, if asset prices respond more to ω shocks as ϵ̃ increases, this

pattern must be driven by the effect of ω on intermediary risk tolerance, not by the effect on

household risk tolerance.

Proof: See appendix B.

This proposition formalizes the intuition that one can already arrive at by examining

the expression in the baseline setup in equation (6), where ρH(ζ) does not explicitly depend

directly on ω. If, in practice, shocks to ζ and ω are positively correlated empirically and

ρ
′
H > 0, then the exclusion of controls that may proxy for shocks to ζ actually work against

my finding an effect because the coefficient on dζ is decreasing in ϵ̃ while the coefficient on dω

is increasing. As Haddad and Muir (2021) point out, it is likely that financial institutions’

risk tolerance shocks are positively correlated with those of households, so this seems to be

the relevant case empirically.

Observe that the model implies the spread in betas on contemporaneous shocks are due

to discount rate effects: Price appreciation in a more intermediated stock occurs because of
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positive shocks to intermediaries’ willingness to take risk, absent any fundamental informa-

tion about stock cashflows. Though the discount rate and cashflow components of returns

cannot be observed perfectly, the combined presence of return predictability on the basis of

predetermined state variables and price movements induced by contemporaneous shocks to

the same state variables would constitute strong evidence that the effects are driven through

the discount rate component of returns. Because of this, I include both contemporaneous

and predictive tests of the model’s implications.

The choice to have absolute risk aversion vary as a function of underlying state variables

is obviously critical to the model’s predictions and deserves further attention. Since the

coefficient of relative risk aversion is related to the coefficient of absolute risk aversion by

wIγI = αI (where wI is the agent’s wealth, γI the absolute risk aversion, and αI the relative

risk aversion), parameterizing γI to vary as a function of wealth or wealth share—as I do

here, and as is also done in Haddad and Muir (2021), He et al. (2022), and Koijen et al.

(2023)—tractably captures wealth effects such as those present in intermediary asset pricing

models with constant relative risk aversion of specialists. He and Krishnamurthy (2013)

is one such example. In this model, wealth shocks lead to changes in risk premia, as the

distribution of wealth shifts between agents with different willingness or ability to bear

risk. These effects also have outsize influence in the constrained region of the model, when

equity capital constraints bind and intermediaries require price concessions to bear aggregate

risk. In appendix B.2, I explore an alternative version of the model with log-normal payoffs

couched in constant relative risk aversion preferences, which directly allows for intermediary

wealth effects. A version of propositions 1 and 2 holds in this version of the model, as well,

though closed-form expressions rely on a log-linear approximation.

The presence of risk aversion is not required for intermediaries to exhibit time-varying

risk-bearing capacity as long as there are binding constraints that cause intermediaries to

behave as if they are risk averse. Brunnermeier and Sannikov (2014) work with risk-neutral

agents and find that specialists’ wealth share is a critical state variable, generating large

spikes in risk premia in the constrained region just as in He and Krishnamurthy (2013).

Adrian et al. (2014) point out that, in a setting resembling Brunnermeier and Pedersen

(2008) with margin constraints, time variation in the margin constraint can lead to nontrivial

state pricing where risk-neutral intermediaries value a dollar of wealth relatively more when

the Lagrange multiplier on the margin constraint is higher and the value of relaxing the

constraint is larger. Thus, when margin constraints are tighter, intermediaries invest as if

they were more risk averse. Adrian et al. (2014) argue that their leverage measure (which

is the reciprocal of margin) proxies for the tightness of leverage constraints and hence risk-

bearing capacity. In this sense, having risk-tolerance shift because of intermediary shocks is
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a sort of reduced-form way of capturing the price effects of such mechanisms. Furthermore,

allowing households’ absolute risk aversion to vary as a function of state variables can capture

features related to time variation in household risk aversion, as would be found in a habit

model, for example.

In summary, the crux of the model’s predictions are this: If (1) intermediary risk toler-

ance is time varying and we have suitable proxies for this time variance, (2) directly investing

households differ from interemediaries in their assessment of stocks’ cashflows (e.g., because

of differential expectations errors or real or perceived trading costs), and (3) there is variation

in households’ expectations errors (or direct investment costs) across otherwise similar assets,

then we should be able to detect the effects detailed in propositions 1 and 2. The justifica-

tion behind point (1) comes from the literature on friction-based intermediary asset pricing

models. Point (2) can be seen as resulting from households’ limited rationality/information

processing capacity relative to that of more sophisticated institutional investors; similar fea-

tures are present in numerous asset pricing models. I argue point (3) by demonstrating in

section 4.1 that I can construct a measure that holds fundamental stock information constant

yet still generates a large spread in average intermediation.

3 Data Sources and Sample Construction

Before proceeding to the empirical implementation, I first describe the datasets used and

sampling procedure followed. Individual monthly firm stock returns are from the Center for

Research in Security Prices (CRSP). The sample is restricted to ordinary common shares

(share codes 10 or 11) that trade on the NYSE, Amex, or Nasdaq (exchange codes 1, 2,

or 3). Institutional holdings data for individual stocks come from the Thomson Reuters

Institutional Holdings Database (S34 file). Because of well-documented errors in the S34

database institutional type classifications, I use the corrected type codes provided by Koijen

and Yogo (2019) to classify institutions into mutual funds and other investment advisors

(the category that prominently includes the largest hedge funds).12 I download the quarterly

holdings data from 1980q1 to 2017q2. When processing institutional holdings, I follow the

recommendations of Ben-David, Franzoni, Moussawi, and Sedunov (2021) in using CRSP-

reported shares outstanding to compute the percentage of shares held by institutions and

capping any individual 13F institution’s holdings of a given stock at 50% of the market cap

to avoid occasional extreme outliers.13 My primary set of stock characteristics is originally

12For a more detailed description of these data, see Gompers and Metrick (2001) or, for a more recent
contribution, Koijen and Yogo (2019).

13Ben-David et al. (2021) report issues with missing holdings in the Thomson Reuters data in the post-
2013 period that cause the time-series share of the market cap held by institutions to be underestimated.
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derived from Compustat but is taken directly from Koijen and Yogo (2019), whose paper

on characteristics-based demand of financial institutions also utilizes the Thomson Reuters

database. The characteristics are derived from the Fama–French 5-factor model and include

past 5-year stock capital asset pricing model (CAPM) beta, log book equity as a proxy

for size, gross profitability, and asset growth. I further include the book-to-market ratio as

the ratio of book equity to market cap from a year prior. As in Koijen and Yogo (2019),

accounting characteristics are obtained as of at least 6 months and no more than 24 months

prior to the given date to ensure the data are publicly available at the time of portfolio

formation.

In addition to the Koijen and Yogo (2019) characteristics, in a robustness check, I add to

the set of stock characteristics dozens of financial ratios obtained from the Wharton Research

Data Services (WRDS) financial ratios suite. I also obtain the quarterly and monthly series of

shocks to Federal Reserve primary dealer capital introduced in He et al. (2017) and available

on Asaf Manela’s website. As an additional intermediary variable, I obtain the leverage of

broker-dealers introduced in Adrian et al. (2014).14 The monthly Fama–French risk factors

plus momentum factor are also downloaded from Ken French’s website.

The sample construction proceeds as follows. For each quarter, I take the intersection of

the entire CRSP universe of stocks meeting share code and exchange code criteria described

above with the Koijen and Yogo (2019) stock characteristics data, excluding any missing

matches within a quarter. To ensure my findings are not driven by very small stocks where

trading frictions are likely to be larger, I further exclude microcap stocks (defined as stocks

beneath the NYSE 20th percentile in market cap) from the sample each quarter and stocks

with price less than $5 to focus on the set of stocks that large financial institutions are

able to trade most freely. I additionally exclude financial stocks (stocks with a Standard

Industrial Classification [SIC] code between 6000 and 6999) from my sample. This common

restriction is even more practical in my setting because the relationship between stock price

movements and intermediary risk-bearing capacity is highly endogenous for financial stocks.

In terms of market cap, these restrictions lead me to drop only a small portion of the CRSP

equity universe—my sampling retains on average approximately 97% of the total market

capitalization of non-financial stocks on the CRSP tape. These stocks constitute the primary

quarterly sample. I also convert the monthly Fama–French five factors and momentum to

their respective quarterly versions. Unless otherwise noted, the sample period for regressions

My empirical strategy relies on cross-sectional variation in holdings rather than the time series, so this issue
is of lesser concern. Unreported estimates (available upon request) establish that all the findings in this
paper are unaffected by my restricting to the pre-2013 period.

14Thanks to Koijen and Yogo (2019), He et al. (2017), and Adrian et al. (2014) for making their data
readily available.
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spans 1980q2 to 2017q3.

Additional tests in section 5 rely on alternative institutional holdings data obtained from

FactSet. I discuss the FactSet data in appendix C.3.

4 Empirical Strategy and Results

4.1 Constructing the Measure of Intermediation

The characteristics-based economic framework discussed in section 2 suggests that stocks

with similar characteristics but higher intermediary holdings should have higher betas on

intermediary capital shocks. In this vein, I construct a measure of intermediation intended

to be unrelated to key stock characteristics that proxy for information regarding cashflow

distributions. Let Xi,t be a vector of stock characteristics that are informative about the

distribution of time t + 1 cashflows of asset i. Recall in equation (4) that the constants α

and δ also depend on the current risk tolerance of the agents in the model. To the extent

that these and belief differences are time varying, the empirical analogue to (4) should be

estimated with time-specific coefficients. Hence, at each time t, I run the following cross-

sectional regression:

Percentage Intermediatedi,t = αt + βtXi,t + ϵi,t (8)

Since the residuals ϵi,t in regression equation (8) are analogous to ϵ̃ in model equation

(4), this implies that sorting on ϵi,t should induce variation in betas on proxies for shocks

to intermediary risk tolerance. More broadly, I implement this approach to ensure that the

cross-sectional spread in asset price response to shocks to intermediary risk-bearing capacity

is not driven primarily by differential fundamental exposures to other risk factors.

If the risk tolerance of the financial institutions that are active in equity markets is

time varying and moves because of changes in empirical proxies of financial intermediary

capital, sorting on ϵi,t should induce variation in betas on shocks to intermediary capital,

and current intermediary capital should contain information about the expected returns of

high-ϵi,t assets relative to those of low-ϵi,t assets. Specifically, high-ϵi,t assets should have a

larger contemporaneous price response due to shocks to proxies for intermediary capitaliza-

tion/intermediary risk tolerance and greater return predictability by the level of intermediary

capital, as outlined in propositions 1 and 2.

Here, Percentage Intermediatedi,t denotes the percentage of shares held by mutual funds,

hedge funds, and other investment advisors. I focus on these institution types because they

include the set of financial intermediaries that are the largest and most active in equity
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markets, though my results are unaffected by my instead including all 13F institutional

investor types, as I demonstrate in section 4.5.

Regression equation (8) decomposes intermediary holdings into three components: βXi,t,

holdings due to firm fundamentals; αt, holdings coming from time changes in the average-

level institutional holdings15; and ϵi,t, holdings unrelated to fundamentals (possibly reflecting

unobserved expectations errors or perceived direct holding costs). In the empirical tests to

follow, I show in a variety of settings that ϵi,t is strongly related to intermediary capital betas

on both predictive and contemporaneous variables.

Implementing (8) requires that Xi,t be related to asset fundamentals that are informative

about the distribution of future cashflows. Following Koijen and Yogo (2019), I focus on a

set of stock characteristics derived from the Fama and French (2015) empirical asset pricing

model that is known to have significant explanatory power for the cross section of stock

returns and, hence, presumably provides considerable fundamental information about the

distributions of asset cash flows.16 The empirical implementation of (8) includes the following

set of stock characteristics in Xi,t: a second-degree polynomial in log book equity, gross

profitability to book equity, annual growth in firm assets (as a proxy for investment), book-

to-market ratio using one-year-lagged market cap, and 5-year rolling monthly preranking

CAPM beta (requiring at least 24 observations to be included). These are derived from

the sorting characteristics used to construct the risk factors in the Fama and French (2015)

model. I use these characteristics as constructed by Koijen and Yogo (2019), who, in turn,

construct them from Compustat to align with the procedure in Fama and French (2015).

In robustness checks, I demonstrate that the set of characteristics included in (8) is

not particularly important after stock size is controlled for. My proxy for stock size is log

book equity rather than market equity because market equity is an endogenous equilibrium

outcome that is potentially directly affected by intermediary and household demand for the

asset (though the findings hold in unreported regressions where I use market equity instead

of book equity as my size proxy). The model in section 2 demonstrates why it is important

to control for stock size. The empirical tests described in propositions 1 and 2 require that

the means and variances of underlying cashflows be held constant. Since I normalize net

supply to one, the price of a given asset has the interpretation of the stock market cap, and

the means and variances are the means and variances of the total dividends paid out to all

15An upward trend in institutional holdings has been well documented. See Stambaugh (2014), for
example.

16For example, Kewei, Xue, and Zhang (2015) argue that their empirical asset pricing model, which is
closely related to the model of Fama and French (2015), performs particularly well in describing the cross
section of returns when microcap stocks are not overweighted in portfolio formation. Thus, (8) is likely to
be more relevant among the set of the larger, more liquid stocks (non-microcap stocks and stocks with a
share price above $5) that I consider in my analysis.
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the stock’s shareholders. Hence, µ and Σ are highly dependent on the stock size in practice.

In Table 1, I estimate the Fama–Macbeth time series average coefficients from each

cross-sectional regression (8). By far the strongest predictor of intermediary holdings is

stock size, as proxied by log book equity and log book equity squared, although each of the

other characteristics is statistically significant in explaining institutional holdings. These

institutions tend to overweight large stocks, profitable stocks, and stocks with high asset

growth and CAPM betas and tend to underweight value stocks. Note also that the average

cross-sectional R2 is only approximately 0.11, which still leaves a substantial portion of

intermediary holdings unexplained each period. I use this unexplained portion to proxy for

variation in ϵ̃ from the model that is unrelated to stock fundamentals.

4.2 Empirical Results For Portfolios Sorted on Residual Interme-

diation

Though the theoretical propositions in section 2 required that stock fundamentals be

held constant, as a practical matter, the empirical predictions in propositions 1 and 2 still

hold as long as two assets look sufficiently similar but have a wide spread in ϵH (and,

hence, in percentage intermediated). In terms of model parameters, if ϵH,1 << ϵH,2, and

characteristics X1 ≈ X2, then the empirical implications of propositions 1 and 2 should still

hold: Namely, if asset 1 is much more intermediated than asset 2, asset 1 should have a

higher beta on shocks to intermediary risk-bearing capacity and should be more predictable

by state variables capturing intermediary risk tolerance (or lack thereof).

I now organize around this idea by forming equal-weighted portfolios on the quintiles

of the residual institutional holding measure ϵi,t; later, I will support the portfolio analysis

with stock-level panel regressions interacting intermediary shocks with ϵi,t. The portfolios

are rebalanced quarterly. I focus on equal-weighted portfolios because it is simpler to net out

differences in average portfolio stock characteristics with equal weights, and this also ensures

that they are well-diversified portfolios. However, I show in section 4.5 that my findings are

robust to value-weighting. Moreover, since I drop microcap stocks (those below the NYSE

20th percentile of market cap) and also stocks with a start-of-period share price below $5
from my sample, this mitigates any concerns that the equal-weighted portfolios are driven

by tiny stocks facing major liquidity issues and large limits to arbitrage.

Figure 2 shows that the portfolio formation does an excellent job in holding characteristics

constant between top- and bottom-quintile portfolios sorted on ϵi,t while inducing substantial

variation in intermediation—the average institutional holdings quintile is just below five at

each point in time for the top-ϵi,t-quintile portfolio, while it is just above one for the bottom-
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ϵi,t-quintile portfolio. Meanwhile, the average quintiles of the rest of the characteristics all

hover around three for both portfolios. Thus, these portfolios look almost exactly the same

on the key stock characteristics that form the basis of the Fama and French (2015) asset

pricing model, which is known to describe the cross section of stock returns well.

Table 2 shows the means and medians of stock characteristics for each of the five portfolios

formed on quintiles of ϵi,t, including percentage holdings by mutual funds, hedge funds, and

investment advisors; log of market and book equity; book-to-market ratio; asset growth;

profitability/book equity; and preranking CAPM beta estimated over the past 60 months

(and a minimum of 24 months). In line with the graphical evidence in Figure 2, the means and

medians of each characteristic other than percentage intermediated are extremely close for

the top- and bottom-quintile portfolios formed on ϵi,t and are also fairly close for the middle

three portfolios (though they tend to have slightly higher profitability and book to market in

the middle). Meanwhile, there is a large spread in average percentage intermediated between

the top- and bottom-quintile portfolios, with 62% intermediated at the top and only 19%

intermediated at the bottom. Thus, Table 2 provides further confirmation that sorting on ϵi,t

isolates variation in holdings by financial institutions while holding other stock fundamentals

essentially constant, particularly when the top- and bottom-quintile portfolios are compared.

The top- and bottom-ϵi,t portfolios also have a high degree of comovement, as can be seen

graphically in Figure 1. The correlation in excess returns on the two portfolios is 0.96. Table

3 shows the means, standard deviations, and Sharpe ratios of the five portfolios formed on ϵi,t.

Focusing on the top and bottom quintiles, we see that the annualized excess return standard

deviations of 41.74% and 38.66% of the top- and bottom-quintile portfolios are also close to

one another, as are their Sharpe ratios, which are, respectively, 0.22 for the top quintile and

0.26 for the bottom quintile. The top-quintile portfolio has slightly lower returns, though the

spread is not very large at -0.853% per year, and carries an insignificant t-statistic of -1.439.

Given that I construct the portfolios after netting out differences in characteristics that are

known to predict the cross section of stock returns, it is not particularly surprising that I

find little action on differences in average returns; in any case, my purpose is to examine

heterogeneity in stock price responses to intermediary shocks, rather than to analyze average

returns, so this fact is not of crucial importance.

The model implies that the portfolios should have monotonically increasing exposures

to shocks to intermediary risk-bearing capacity. I use four proxies for this (from here, I

abbreviate the references to He et al. (2017) and Adrian et al. (2014) as HKM and AEM,

respectively): shocks to primary dealer market equity capital ratio from HKM, broker-dealer

book leverage shocks from AEM, value-weighted excess returns on the financial sector (stocks

with SIC codes between 6000 and 6999), and my primary proxy, which standardizes the AEM
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and HKM measures individually, takes the average of the two, and then restandardizes this

average to zero mean and unit variance.

The reason I combine the AEM and HKM shocks is to take a weighted average of finan-

cial sector risk-bearing capacity using the most prominent and successful proxies for shocks

to intermediaries proposed in the literature, analogously to Haddad and Muir (2021). A

seeming source of tension between these two measures is that AEM find that broker-dealers

have procyclical leverage while HKM find that bank holding companies have countercyclical

leverage. While this fact initially seems hard to reconcile, follow-on work has demonstrated

that the two results can be easily squared in a more general framework featuring hetero-

geneous types of key intermediaries: Both Kargar (2021) and Ma (2017) demonstrate that

a heterogeneous intermediary SDF can be constructed as a function of shocks to two state

variables that are closely related to the AEM and HKM measures. Such an SDF arises when

different classes of intermediaries face heterogeneous financial constraints or have different

risk aversion and yields leverage patterns that are simultaneously consistent with the findings

of both AEM and HKM.

I take the two measures at face value: AEM capture shocks to institutions that lever up

in good times and face more binding margin constraints when market conditions deteroriate

and, hence, must delever in a liquidity crisis (Brunnermeier and Pedersen, 2008; Adrian and

Boyarchenko, 2012); HKM capture shocks to central financial institutions that face an equity

constraint that binds during crisis times when their net worth is low and, hence, leverage

is high (He and Krishnamurthy, 2013; Brunnermeier and Sannikov, 2014). Combining the

two results yields a powerful measure of overall shocks to intermediary sector constraints. In

additional tests, I examine comovement with value-weighted returns on the financial sector,

as this measure is directly related to the wealth share shocks that are important in equity-

constraint-based intermediary asset pricing models.

4.2.1 Portfolio Contemporaneous Comovement

I test proposition 1 by running regressions of the form

Ri
t+1 −Rf,t = αi + β1,iFt+1 + β2,i(MktNonFin

t+1 −Rf,t) + νi,t (9)

individually for Ft+1 = Intermediary Shockt+1, Capital Shockt+1, Leverage Shockt+1, and

Ex Ret. (Fin)t+1 and also across the returns in excess of the risk-free rate for the five in-

termediation (ϵi,t) quintile portfolios, i = Q1, Q2, Q3, Q4, Q5, plus the excess returns of the

high-minus-low-ϵi,t (Q5−Q1) portfolio. Here, Intermediary Shockt+1 refers to the combined

AEM and HKM measure, Capital Shockt+1 the HKM shock, Leverage Shockt+1 the AEM
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shock and, finally, Ex Ret. (Fin)t+1 the value-weighted stock market excess return on the

financial sector. I control for a version of the value-weighted market risk factor that includes

just the returns to non-financial stocks. I include this control for several reasons. First, the

AEM and HKM models present asset pricing tests controlling for market risk. Second, as

illustrated in equation (6), it is important to control for shocks that could proxy for changes

in the risk aversion of households, and market returns relate to time variation in risk aver-

sion for certain classes of models, such as habit models. The joint inclusion of shocks to

intermediary risk-bearing capacity and non-financial stocks also directly relates asset price

movements to financial and non-financial wealth share shocks. The non-financial market risk

factor has a correlation of 0.99 with the value-weighted market risk factor from Ken French’s

website.

Table 4 shows the results of the contemporaneous portfolio tests using the combined

Intermediary Shockt+1 measure. The same findings are illustrated graphically in Figure 3.

Strikingly, there is a strong monotonically increasing relationship in the betas on the inter-

mediary shock and no pattern whatsoever in the non-financial market return betas. The

t-statistic of 5.51 on the Q5-minus-Q1-intermediation spread portfolio is highly significant.

This monotonic pattern is directly in line with the theoretical implications presented in sec-

tion 2 and also with the finding of He and Krishnamurthy (2018) that similar but more

intermediated assets should have relatively higher betas in response to intermediary risk tol-

erance shocks than to household wealth shocks. Since the intermediary shock is scaled to have

unit standard deviation and the returns are in annualized percentage form, the coefficient of

4.09 in column (6) of Table 4 means that the annualized return on the high-intermediation

portfolio increases by 4.09% relative to that on the low-intermediation portfolio in response

to a one-standard-deviation intermediary shock. Note also the relative magnitudes when

columns (5) and (1) are compared: The beta on the top-quintile portfolio is nearly 5 times

larger than that on the bottom-quintile one—a very large economic difference.

The empirical patterns illustrated in Figure 3 continue to hold when I examine each

proposed intermediary shock individually while controlling for the market factor. This is

demonstrated in Figure 4, where I also estimate a version of (11) for the HKM, AEM, and

financial sector excess return. The loadings are increasing from bottom to top quintile, and

the top-minus-bottom-quintile spread has a significant loading for each of the four interme-

diation risk-bearing capacity shocks. The exposures increase monotonically for all measures.

Note also that combining the information in AEM leverage shocks and HKM capital shocks—

as I do in Figure 3 and repeat for comparison in the top-left subfigure of Figure 4—leads to

a more statistically significant coefficient on the top-minus-bottom-quintile spread relative

to the significance of the coefficients on the individual measures.
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As a final piece of evidence for the contemporaneous portfolio regressions, in Figure 6,

I run regressions separating the HKM capital shocks and AEM leverage shocks but include

them both within the same specification:

Re
i,t+1 = αi + β1,iFt+1 + β2,i(MktNonFin

t+1 −Rf,t) + νi,t (10)

The high-minus-low-intermediation excess return is significantly positive for both risk factors,

with monotonicity in the betas for both the capital shocks and the leverage shocks. Thus, the

HKM capital and AEM leverage factors continue to display patterns in line with proposition

1 when included together in the same regression.

4.2.2 Return Predictability and Risk Premium Variance Decomposition

I next turn to my predictability tests that relate to proposition 2, which is that otherwise

similar but more intermediated stocks should also have excess returns that are ex ante more

positively predictable by state variables that capture a lower risk-bearing capacity of financial

institutions. I primarily focus on my composite measure of the inverse of intermediary risk

aversion. I construct this proxy using information from two state variables in my predictabil-

ity tests: the squared market leverage ratio of Federal Reserve primary dealer bank holding

companies, as implied by HKM, and the level of the book leverage ratio of broker-dealers

obtained from the flow-of-funds account. Similarly to what I did for my tests of contempora-

neous comovement, I again take the average of the standardized versions of these two ex ante

state variables as my main proxy for intermediary risk aversion at the current date. He et al.

(2017) point out that the model of Adrian et al. (2014) implies that the level of broker-dealer

leverage is a state variable that should negatively predict returns. Hence, when I take the

average, I use the negative of the broker-dealer leverage ratio so that the composite measure

predicts returns with a positive sign. I call my composite measure of intermediary risk aver-

sion ηt. In addition to testing whether ηt predicts returns relatively more for intermediated

portfolios, I examine what fraction of the total variation in conditional equity risk premia I

can attribute to movements in ηt.

I run regressions of the following form:

Re
i,t+1 = αi + β1,iηt + β2,iZt + νi,t (11)

Here, i indexes the quintile i = 1, . . . 5 portfolios formed on residual intermediation ϵ, as

before. The control Zt is a composite predictor for the conditional equity risk premium,

comprising information coming from market return predictors previously documented in the
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literature. To be precise, I construct Zt by taking the 14 predictor variables from Welch and

Goyal (2008)17; the consumption–wealth ratio (cay) from Lettau and Ludvigson (2001); the

aligned investor sentiment index from Huang et al. (2014), which uses PLS to optimize the six

investor sentiment proxies in Baker and Wurgler (2006) for time-series return predictability;

the aggregate short-selling index of Rapach, Ringgenberg, and Zhou (2016); and the investor

attention index from Chen, Tang, Yao, and Zhou (2022). The Welch and Goyal (2008)

predictors are standard macroeconomic variables used in return prediction, while the aligned

sentiment, short-selling, and investor attention indices are three of the most powerful time-

series predictors of the equity premium documented in recent literature.

I apply the full-sample PLS approach of Kelly and Pruitt (2013) and Huang et al. (2014)

for optimizing the information in these variables to predict the equity premium. For each

individual predictor j, I run a time-series regression of the time-t predictor xj,t on the time-

t+1 non-financial market excess return (MktNonFin
t+1 −Rf,t) and extract the coefficient estimate

π̂j. Then, for each time period t, I run a cross-sectional regression of xj,t on π̂j and extract

the estimated coefficient Zt, which is my composite risk premium predictor. Kelly and Pruitt

(2013) and Huang et al. (2014) discuss in detail how this method is effective at isolating the

common component across the xj,t that is most informative about future stock returns, and

it tends to result in highly powerful time-series return predictors. The resulting Zt series has

a correlation of 0.22 with ηt.

I consider Zt a reasonable upper bound on the drivers of risk premium variation not

related to time variation in intermediary risk aversion ηt. When estimating (11), I extract

the R2 and compare this with the R2 resulting from regressing Re
i,t+1 on η⊥t , where η

⊥
t has

been orthogonalized with respect to Zt. The ratio of the two R2 values gives a lower bound

on the share of risk premium variation driven by ηt; similarly, regressing Re
i,t+1 on ηt (without

orthogonalizing) and taking the ratio of R2 values from the resulting regression and also from

the full specification (11) gives an upper bound on the share of return predictability driven

by ηt. Note that the lower bound relies on a fairly conservative assumption, as aggregate

short-selling, dividend price ratios, investor attention, and various other variables in the

predictor set may plausibly be directly driven at least in part by frictions originating in the

financial sector (as captured by ηt) but, at the lower bound, all of the predictability coming

17These predictors are as follows: log dividend–price ratio, log dividend yield, log earnings–price ratio,
log dividend–payout ratio, stock variance (monthly sum of squared daily returns on the S&P 500 index),
book-to-market value ratio for the Dow Jones industrial average, net equity expansion (ratio of 12-month
moving sum of net equity issues by NYSE-listed stocks to the total end-of-year market capitalization of
NYSE stocks), three-month treasury bill yield (secondary market), long-term government bond yield, return
on long-term government bonds, long-term (10-year) government bond yield minus the treasury bill yield,
default yield spread (difference between BAA- and AAA-rated corporate bond yields), and default return
spread (long-term corporate bond return minus the long-term government bond return).
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from this variation is instead attributed to non-intermediary sources.

I report the coefficients β1,i for portfolio quintiles i = 1, . . . 5 in Table 6, and the final

column of the table considers a regression of the relative returns to the spread portfolio,

R5,t+1−R1,t+1, on ηt and Zt. Coefficient estimates include Newey–West standard errors with

Newey and West (1994) optimal lags. As before with the contemporaneous regressions, the

slope coefficients on ηt monotonically increase from portfolios 1 to 5, and the coefficient on

the excess return between the top and bottom portfolios is highly statistically significant.

The sixth column implies that a one-standard-deviation increase in ηt raises the relative

annualized risk premium of the most intermediated portfolio by 2.72%. There is substantial

predictability, with R2 values hovering from approximately 8% to nearly 10%, which is quite

a large value for the quarterly horizon.18

As expected, Zt is a highly robust predictor, with p-values below 0.01 for all portfolios.

However, in contrast to ηt, the predictability of Zt is constant across portfolios. In terms of

the share of variation in conditional portfolio risk premia due to η, the R2 value obtained from

my regressing the first portfolio returns on η⊥t is 23% of the overall R2 when both ηt and Zt

are included; the R2 from the regression on the raw ηt is 44% of the total, so ηt must account

for between 23% and 44% of the variation in the bottom portfolio. These numbers are 38%

and 59% for the top portfolio, and both bounds monotonically increase from bottom to top.

The average lower bound is 31.4%, while the average upper bound is 52.6%. Hence, this

exercise suggests that intermediary risk aversion explains approximately 31.4% to 52.6% of

the measured variation in conditional equity returns across these portfolios. Finally, column

6 shows that ηt explains nearly the entirety of the relative risk premia variation between the

high-intermediation portfolio (Q5) and low-intermediation portfolio (Q1).

Compare this results to the finding in Haddad and Muir (2021) that households’ risk

aversion can explain approximately 40% of the measured variation in conditional risk premia

while their bounding exercise cannot attribute any risk premium variation in equity markets,

their least-intermediated asset class, to intermediaries. My estimates imply that the bulk of

the remaining unexplained variation is driven by the intermediary risk aversion proxy ηt.

I include a final test to examine the presence of a theoretical mechanism in the cross

section of return predictability outlined in Gromb and Vayanos (2018). In their model, when

the capital of constrained arbitrageurs depletes, the expected returns increase relatively more

on the assets where arbitrageurs take larger positions. This causes the increased spread to

self-correct over time as intermediary capital recovers because of the increased expected

18By comparison, Haddad and Muir (2021) report an R2 of 4.4% in their analysis of quarterly stock
market return predictability.
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returns on their positions. To test for such effects, I run regressions of the form

R5,t+k −R1,t+k = α + βkηt + νt (12)

where t is now at the monthly horizon and k varies from 1 month ahead to 18 months ahead.19

Figure 6 plots β̂k, its 90% confidence interval, and the R2 for k = 1, ..., 18. As implied by the

theory, the coefficients β̂k decrease with k, as does the R2. Thus, the quarterly horizon used

in the previous predictability tests from this section contains the bulk of the overall high-

minus-low-intermediation portfolio spread return predictability of ηt, which then reverts over

the ensuing months. This is consistent with temporary relative asset price distortions that

are corrected over time as constraints on intermediaries relax when capitalization improves,

in line with Gromb and Vayanos (2018) and, more broadly, with models where intermediary

capital moves slowly because of constraints that become more binding when intermediaries

are poorly capitalized.20

In Appendix Table A.1, I examine the predictability of the intermediation spread portfolio

R5,t+1 − R1,t+1 in specifications where I separate the individual predictor variables used to

construct ηt in columns (1) and (3); and in columns (2) and (4), I explore the predictive

power of the time-t financial sector stock market wealth share. In the last two columns,

I additionally control for the composite predictor Zt. Columns (1) and (3) demonstrate

that both the predictor variables have explanatory power for the spread portfolio, though

broker-dealer leverage is significant only at the 10% level in column (1) and close to but

not quite significant at the 10% level in column (3)—still, theory implies a clear negative

sign for the coefficient, which means that, in both cases, it is still significant at better than

the 10% level for a more powerful one-tailed test. Primary dealer squared leverage is a

significant individual predictor in both specifications; meanwhile, the financial sector stock

market wealth share also predicts the spread portfolio with the appropriate negative sign.

Overall, these tests suggest that I benefit from improved power by combining information

in the two main predictors to arrive at ηt, but both individual measures contain individual

incremental power. Further, the financial sector wealth share’s robust predictive ability also

provides supporting evidence for the role of frictions in the financial sector as a driver behind

the larger relative predictability among highly intermediated stocks.

19Because the broker-dealer leverage is available only at the quarterly horizon, solely for this analysis, I lin-
early interpolate the level of broker-dealer leverage for months between adjoining quarters when constructing
ηt here.

20See, for example, Duffie (2010) for a theoretical summary and Mitchell et al. (2007) for early empirical
evidence in convertible bond markets or, for more recent work, Siriwardane (2019) in credit default swap
markets.
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4.3 Natural Experiment Based on S&P 500 Inclusion

I next examine a natural experiment generating variation in intermediation. In particular,

as noted by Basak and Pavlova (2013) and Aghion et al. (2013), institutional investors have

the incentive to increase holdings of stocks added to the S&P 500, even if they are not

explicitly indexed to it, because the S&P 500 is a natural performance benchmark, which

leads to an increase in institutional ownership after index inclusion. More recently, Boller

and Scott Morton (2020) shows that index inclusion does increase institutional ownership,

and in Appendix Table A.6, I also confirm this intuition: Mutual funds and investment

advisors increase holdings by 2.0% (last two columns) between the quarter before and the

quarter after inclusion relative to holdings of stocks in the same size quintile that quarter,

and total institutional ownership changes by 4% (first two columns), with all estimates being

significant at better than the 1% level.

Accordingly, I examine changes in exposure to the HKM intermediary capital factor 30

months before and after S&P 500 inclusion. I move to the monthly horizon to increase

the number of observations available in a reasonably close window around the event, which

means that I cannot use my combined intermediary shock variable that also includes the

AEM leverage factor. Stocks must have full coverage of returns in the 30-month windows

before and after the event to be included, and I include only stocks that enter the S&P 500

once in my sample period and do not leave for at least 30 months. Comparison firms may

also be or not be S&P 500 member firms, but they must never enter or leave the index in my

sample period. I construct a difference-in-differences (DID) estimator by testing whether the

change in betas on the HKM intermediary capital factor before and after S&P 500 inclusion

is larger than its counterpart for a set of comparison firms in the same group. To be specific,

I test whether

∆β̂HKM
i,t − 1

Ni,t

∑
j∈Comp Groupi,t

∆β̂HKM
j,t

is statistically different from zero on average for firms i that joined the S&P 500 during

month t. Here, ∆β̂i,t,HKM is the difference between the HKM beta for stock i estimated

from months t+ 1 to t+ 30 and the HKM beta estimate taken from months t− 1 to t− 30,

Comp Groupi,t is a set of counterfactual comparison firms for firm i in the month it joined

the index, and Ni,t is the number of firms in the comparison group.

Table 5 explores the results. In the table, I measure the betas on the capital risk factor

in the 30 months leading up to S&P 500 inclusion and the 30 months following inclusion,

leaving out the event month, and control for the Fama and French (2015) 5 factors plus
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momentum when estimating the HKM betas.21 The columns of Table 5 explore estimates

for different sets of comparison firms Comp Groupi,t. Specifically, I compare the change in

HKM intermediary capital betas with the change in the average intermediary capital betas for

stocks in the same size quintile in that year (first column) or the same size quintile interacted

with CAPM beta, book to market, profitability, investment, or momentum (columns (2)

through (6)). The DID estimates are all statistically significant at the 1% level or better and

stable across comparison groups, all pointing to an increase in HKM betas of approximately

0.10 or 0.11. This exercise corroborates the findings based on the portfolio sorts using my

residual intermediation measure and suggests that quasi-exogenous increases in institutional

holdings also generate increasing betas on intermediary factors, consistent with the intuition

from the economic framework in section 2.

4.4 Stock-Level Panel Regressions

This section demonstrates that the portfolio-level evidence from the previous section

extends to the individual stock level. My stock-level empirical tests take the following form

for the contemporaneous regressions:

Ri,t+1 −Rf,t = α0 + β1Ft+1 × ϵi,t + β2Wt+1 × ϵi,t + δϵi,t + αt + αi + νi,t+1 (13)

Here, Ft+1 is any of the contemporaneous shocks to intermediary risk tolerance, and i now

indexes individual stocks instead of portfolios. A finding of β1 > 0 implies that betas on

shocks to financial institutions increase with the component of intermediary holdings that

is uncorrelated with characteristics of the stock. I control for value-weighted non-financial

market excess returns and also add specifications that include the Fama and French (2015)

factors plus the momentum factor for Wt+1 in (13). I also add time fixed effects to control

for common shocks to the cross section as well as stock fixed effects. Replacing the time

fixed effects with uninteracted risk factors yields estimates that are essentially identical.

Once again agreeing with the theory, Table 7 shows that β1 > 0 for all intermediary

shocks considered and is strongly significant for all specifications. However, note in the

first row of Table 7 that the intermediary shock measure that combines the information

embedded in the AEM and HKM factors again yields a stronger individual estimate than

do the measures that include the HKM or AEM factors alone. The financial sector excess

return provides more evidence in agreement with the theory, as it also has a positive and

significant coefficient on the residual intermediation interaction term across specifications.

21I include these controls because membership may affect other features of a firm, such as innovation
propensity as in Aghion et al. (2013), which may effect covariances with other risk factors.
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The economic magnitude of these estimates is fairly large. Consider two stocks with

identical characteristics except that one is owned entirely by mutual funds, hedge funds, or

other investment advisors while the alternative is owned entirely by households. Looking at

the coefficients in the first row of Table 7, we see that the returns to the fully intermediated

stock increase by approximately 8% per year relative to those of the unintermediated stock

on an annualized basis in response to a one-standard-deviation shock to the composite inter-

mediary factor. The point estimates on these coefficients are also quite precise, with t-stats

ranging from 3.7 to 5.22

The only included nonintermediary risk factor whose betas significantly increase with ϵi,t

is the Fama–French robust-minus-weak profitability factor. This feature is also present in

portfolio regressions where I control for the Fama and French (2015) factors plus momentum

in section 4.5, though, for brevity, I do not explicitly report the coefficient estimates in those

specifications.23

For a final stock-level test, I examine the relationship between residual intermediation ϵi,t

and rolling stock betas on intermediary shocks. I first compute rolling betas for each stock

i and each intermediary shock:

Ri,t −Rf,t = αi + βiFt + βM
i

(
MktNonFin

t − Rft
)
+ δi,t

individually for F = Capital Shock, Leverage Shock, Intermediary Shock, and Ex Ret (Fin).

The parameter βi,t is estimated at each time t within a rolling window of plus or minus 15

quarters, including the given quarter. I then run the panel regression

β̂i,t−15→t+15 = α0 + β1ϵi,t + β2Zi,t + αt + αi + νi,t (14)

The controls Zi,t include profitability, investment, CAPM beta, book to market, a second-

degree polynomial in log market cap and log book equity, in addition to stock and time fixed

effects. I require the estimated betas to have all observations from t− 15 to t+ 15 to be in

the sample for (14) (though the results are not sensitive to this restriction). Because of the

22Standard errors are clustered by date to account for cross-sectional correlation in the residuals and are
also double-clustered by firm.

23In unreported estimates, I find that the loading on theRMW profitability factor only obtains conditional
on my controlling for the intermediary shock, which is by far the strongest individual predictor of price
movements for portfolios sorted on intermediation. The RMW loading is also driven entirely by the two-
year period from 1999 to the end of 2000 that immediately preceded the dotcom crash. While it is possible
that intermediary marginal utility loads more on the profitability factor relative to household marginal
utility, such an investigation is outside the scope of this paper. It seems likelier that the loading is driven
by some small relative movements in the cashflow component of returns that is unrelated to intermediary-
based mechanisms and was concentrated in the 1999–2000 period, which was a unique episode for US equity
markets.
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persistence in the dependent variable due to overlap in the estimation windows, I double-

cluster the standard errors by stock and time. Table 8 shows that the individual stock

betas centered on time t on each of the intermediary shocks are each strongly increasing in

intermediation measure ϵi,t, with t-stats ranging from 3.19 to 3.88. Thus, the component of

intermediary holdings unrelated to characteristics has strong explanatory power for the time

variation in betas even at the individual stock level. The coefficient of 5.9 on ϵi,t in column

(1) for the combined AEM/HKM intermediary shock is comparable (albeit slightly lower) in

magnitude to the coefficients found in Table 7 and has the interpretation that, with stock

characteristics held constant, the return response of a completely intermediated stock to a

one-standard-deviation intermediary shock is 5.9 percentage points higher on an annualized

basis than the response of a comparable but completely household-owned stock.

4.5 Additional Tests and Robustness

A natural question regarding my findings concerns whether the results depend crucially

on the characteristics included in, or excluded from, regression (8) to back out the residual

intermediation component ϵi,t. Accordingly, I examine the empirical robustness of my find-

ings to my including many more characteristics or, alternatively, controlling for size. To do

this, I download the set of stock financial ratios provided by the WRDS financial ratios suite.

This set of stock characteristics was used by Kozak, Nagel, and Santosh (2020) to construct

an SDF from a large number of potential cross-sectional return predictors.

Though I obtain the full set of 73 financial ratios from WRDS, I restrict the set of

characteristics to 40 out of the 73 because of data availability restrictions that I impose.24 In

terms of the categories provided by WRDS, the 40 ratios that remain comprise 6 valuation

ratios, 13 profitability ratios, 4 capitalization ratios, 7 financial soundness ratios, 3 solvency

ratios, 3 efficiency ratios, and 4 other ratios. I supplement the original set of characteristics

included in (8), which consisted of a second-degree polynomial in log book equity, gross

profitability to book equity, annual growth in firm assets, book-to-market ratio using one-

year lagged market cap, and 5-year rolling monthly preranking CAPM beta (requiring at

least 24 observations to be included) with these 40 financial ratios and examine whether

including the additional characteristics substantially changes anything. On the other end, I

also check the robustness of my results to the inclusion of only the second-degree polynomial

in log book equity. Using these alternative sets of characteristics, I reestimate ϵi,t and reform

the quarterly quintile portfolios.

In further robustness checks, I alternatively value weight the portfolios using one-year

24I outline the process I use for selecting these characteristics in detail in appendix C.
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lagged market cap and value-weighted cross-sectional regressions to back out ϵi,t); drop the

financial crisis from the sample (defined according to the dates calculated by the NBER as

beginning after the business cycle peak in the end of the fourth quarter of 2007 and ending

after the business cycle trough in the second quarter of 2009); and control for the Fama–

French factors plus momentum as in the stock-level panel regressions from the last section.

The contemporaneous regressions are found in Table A.2, and the predictive regressions

are in Table A.3. Table A.2 uses my primary proxy for contemporaneous shocks to risk-

bearing capacity, the “Intermediary Shock” (the average of the standardized AEM/HKM

shocks). Meanwhile, in the Table A.3 predictive regressions, I continue to focus on the state

variable η, my main proxy for the time-t intermediary risk-bearing capacity, constructed as

the average of the standardized primary dealer squared leverage ratio and the negative of

standardized broker-dealer leverage. The tables report regression coefficients for the high-

minus-low-intermediation quintile spread portfolio.

Table A.2 demonstrates that the intermediary shock significantly explains the spread in

returns between portfolios with high and low residual intermediation no matter the speci-

fication or the set of characteristics included. Interestingly, without controls for the other

characteristics, the non-financial market risk factor also strongly loads on the returns to the

spread portfolio, but this is not the case in any of the other specifications. Value weighting

changes little; nor does controlling for the Fama and French (2015) risk factors plus the

momentum factor. In the last column, we do see that both dropping the financial crisis and

including the additional risk factors increases estimation noise somewhat and reduces the

t-statistic on the intermediary shock to 2.77 in the specification with the full set of controls.

The predictive regressions in Table A.3 have the same features. Increasing η (i.e.,

decreasing intermediary risk tolerance) predicts higher returns going forward on the top-

intermediation portfolio relative to those on the low-intermediation portfolio. As in Table

A.2, the specification that includes only log book equity features more significant coefficients

on the control predictors, but this is almost entirely attenuated in the other specifications.

The coefficient on η remains quite stable, strongly significant, and positive for all specifica-

tions, where value weighting the portfolios, including more stock characteristics, or dropping

the crisis period hardly affects the estimates or the significance. The coefficient on η does

decline in the specification that drops the financial crisis, and the R2 also decreases, though

the coefficient is still significant at better than the 5% level outside the crisis period.

Since the intermediary-based state variables are particularly volatile for the financial crisis

period (see Appendix Figure A.1 for a time-series plot), it is especially important to note that

key comovement and predictability patterns hold when the crisis period is excluded, but they

are also quantitatively more powerful when the crisis episode is included. Since friction-based
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models of financial intermediaries often contain constraints that become heavily binding in

a crisis episode, the financial crisis should be one of the strongest individual periods for

explaining these phenomena, but they should also still continue to be borne out in other

periods. Tables A.2 and A.3 clearly demonstrate that this is the case. The crisis episode

thus enhanced the relative comovement and return predictability of highly intermediated

stocks, consistent with the nonlinear spikes in risk premia during crises found in models

of intermediary asset pricing (He and Krishnamurthy, 2013; Brunnermeier and Sannikov,

2014), but comovement and predictability are not constrained to this one episode.

While one can never account for all information regarding a stock, Tables A.2 and A.3

also illustrate that the empirical patterns are robust to my conditioning on a wide range of

characteristics. It should also be noted that unobserved characteristics would tend to bias

against my finding an effect. This is because stocks whose returns have naturally higher

covariance with shocks to intermediaries provide very poor hedges against bad times for

financial institutions and so observed holdings are unlikely to be driven by some underlying

institutional preference for stocks with high intermediary shock betas. Thus, unobserved

stock information would tend to result in my understating rather than overstating these

effects.

Another concern may be that my findings depend on my focusing on this particular subset

of 13F institutions. In Tables A.4 and A.5, I show that this is not the case: I repeat the

full set of robustness exercises from Tables A.2 and A.3, respectively, except that, instead

of restricting to mutual funds and investment advisors, I include the holdings of all 13F

institutions. The high-minus-low-intermediated portfolio excess return continues to comove

more with contemporaneous shocks to intermediary capital for all the different versions,

and the relative ex ante risk premium is always more predicted by my proxy for current

intermediary risk aversion, all with similar magnitudes and statistical significance.

Since the percentage of stocks held by households is one minus the percentage held by

institutional investors (ignoring small institutions that do not qualify as 13F filers), these

estimates from sorting on total residual institutional ownership are also equivalent to sorting

on (the reverse of) residual household ownership. Thus, Tables A.4 and A.5 confirm another

prediction of the theory in section 2: Prices of stocks preferred by households should move less

with contemporaneous intermediary shocks and should be less predictable by state variables

capturing intermediary risk aversion.

4.5.1 Panel Regressions with Illiquidity and Short Interest Controls

The stock-level panel regressions in section 4.4 did not control for liquidity-based measures,

nor did they account for short interest in the stock (although my portfolio-level tests in-
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clude aggregate short interest as one of the predictors in the composite risk premium Zt). I

intentionally do not net out liquidity and short interest when constructing the residual in-

termediation measure ϵi,t because such characteristics are equilibrium outcomes determined

by the set of institutions active in trading a given asset, rather than fundamental charac-

teristics determining stock cashflows. For example, since financial institutions may be more

active traders, high institutional ownership endogenously affects liquidity. Similarly, short

sellers are attracted to stocks held by institutional investors because they relax short-selling

constraints (Nagel, 2005).

These measures do have modest correlations with ϵi,t: The average of the log of the

Amihud (2002) illiquidity index over quarters t − 1 to t − 4 has a correlation of -0.15 with

ϵi,t, while average short interest as a percentage of shares outstanding over quarters t− 1 to

t− 4 has a correlation of 0.14 with ϵi,t. On the liquidity side, this could be consistent with

some preference for liquidity among institutional investors but also with stocks with greater

institutional holdings improving equilibrium liquidity. Given these correlations, one may

wonder whether the panel regressions are robust to my including controls for these variables.

I do so in Appendix Table A.8, which repeats the analysis of Table 7 but adds illiquidity

and short interest controls, and Appendix Table A.9, which repeats the analysis of Table 8

with additional liquidity and short interest controls (see table footnotes for details). In both

cases, the coefficients are economically and statistically similar.

5 Exploring Mechanisms and Alternative Explanations

5.1 Importance of Exposure to Dealer Banks and Broker-Dealers

As explained in proposition 3 of section 2, unless household risk tolerance shocks are

negatively correlated with the risk tolerance shocks of mutual funds, hedge funds, and other

investment advisors, the increasing price responses to intermediary shocks as institutional

holdings increase must reflect that the risk-bearing capacity of these institutions is more

affected by these shocks than is households’. Thus, my findings in the last section imply

that the largest institutional investors in equity markets are directly affected by shocks to

dealer banks and other broker-dealers. What, then, are the reasons why the risk-bearing

capacity of mutual funds, hedge funds, and other investment advisors is sensitive to the

health of bank holding companies of Federal Reserve primary dealers and the broker-dealer

sector in general?

As Cho (2020), Adrian et al. (2014), and He et al. (2017) discuss, broker-dealers and

dealer banks occupy a key role in the financial sector due to their central positions as capital
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providers and as prominent intermediaries in the markets for diverse asset classes. Among

institutional investors that are active in equity markets, the mechanisms described in this

paper should be most active for those whose operations are most clearly connected to dealer

banks and broker-dealers. For example, the connection for hedge funds seems readily ap-

parent, as hedge funds are levered institutional investors that depend heavily on capital

provision by dealer banks for their ability to trade actively in equity markets and other

asset classes. Aragon and Strahan (2012) list the top prime brokers to hedge funds in the

years 2002–2008 leading up to the financial crisis; the vast majority of the top ten insti-

tutions and all of the top five each year were also Federal Reserve primary dealers at the

time. Cho (2020) also argues that hedge fund capital depends on the AEM broker-dealer

leverage. When these institutions become distressed, capital availability declines, and hedge

funds, in turn, also become distressed. In line with this, Ben-David, Franzoni, and Moussawi

(2012) demonstrate that hedge funds were forced to delever when their institutional capital

providers withdrew capital via margin calls and redemptions.

Nonetheless, other 13F institutions classified as investment advisors or mutual funds may

also invest in a manner that directly connects their well-being to shocks to dealer banks’ risk-

bearing capacity. This is because 13F institutions are classified at the investment company

level but even investment companies classified as mutual funds may in fact have funds that

engage in investment strategies exposing them to the intermediation provided by dealer

banks. To the extent that this is true, we would expect the financial health of the set of 13F

institutions with exposure to such strategies to be more dependent on shocks to the health

of broker-dealer banks than those without such exposure.

Given the role of dealer banks as prime brokers for hedge funds, I first examine the

differential price response between stocks with high and low holdings by hedge funds. I

obtain an updated list of 13F hedge fund managers from Vikas Agarwal, which has been

used in a series of papers examining the characteristics of hedge fund holdings and returns.25

Using these data, I restrict my baseline measure of mutual fund and investment advisor

holdings to the subset identified as hedge fund managers, and I then back out the percentage

holdings by hedge funds. I then re-estimate ϵHedge Funds
i,t in equation (8), where I replace the

percentage intermediated with the percentage of the stock held just by hedge funds. I then

examine the excess returns for stocks in the top-minus-bottom-quintile porfolios sorted on

ϵHedge Funds
i,t .

I examine the results in Table 9. In the first two columns of panel A, I regress the top-

minus bottom-quintile excess return RQ5,HedgeFunds
t+1 −RQ1,HedgeFunds

t+1 on the contemporaneous

25These include Agarwal et al. (2024), Agarwal et al. (2017), Agarwal et al. (2013), and Agarwal et al.
(2013). Thanks to Vikas Agarwal for generously sharing the data with me.
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Intermediary Shockt+1, with different sets of controls. I obtain a statistically significant pos-

itive relationship between the high-minus-low-quintile hedge fund return portfolios and the

intermediary shock, consistent with hedge funds’ risk-bearing capacity directly responding

to shocks to dealer banks and other broker-dealers, supporting that proposition 1 holds for

hedge funds specifically. In terms of magnitude, and when we focus on the full-sample re-

gressions with controls in column (2), a one-standard-deviation intermediary shock increases

the annualized returns of top-quintile hedge fund residual holdings stocks by approximately

2.7 percentage points relative to those of bottom-quintile stocks. This holds regardless of

whether I control for the non-financial market risk factor or the full set of Fama and French

(2015) risk factors plus the momentum factor.

In the first two columns of panel B of Table 9, I explore predictive regressions ofRQ5,HedgeFunds
t+1 −

RQ1,HedgeFunds
t+1 on ηt, the intermediary risk aversion index. Similarly to the results of the con-

temporaneous regressions in panel A, and in line with proposition 2, the estimates show a

significantly positive predictive relationship between the return on the hedge fund residual

intermediation spread portfolio and start-of-period intermediary risk aversion ηt. For the

regression with the composite risk premium in column (2), the coefficient implies that a one-

standard-deviation increase in initial intermediary risk aversion generates a 2% annualized

increase in the conditional expected return for stocks in the top quintile of residual holdings

by hedge funds relative to that for stocks in the bottom quintile.

A casual comparison of the coefficients for just hedge funds in Table 9 and those based

off a broader set of institutions in Tables 4 and 6 could make it seem that, while hedge

funds’ risk-bearing capacity responds to broker-dealer shocks, the degree of responsiveness is

smaller. However, the two coefficients are not directly comparable for two reasons. The first

simple reason is apparent in equations (6) and (7), which make clear that the coefficients

should increase in the amount of ϵi,t dispersion between the top and bottom portfolios. This

dispersion is naturally larger for my baseline measure than when I focus specifically on hedge

funds because of the larger set of institutions in my baseline.

Second, and more importantly, the comparison group for hedge funds is not the same

set of investors as when I consider the broader set of institutional holdings. When the “in-

termediary” holdings are restricted to just hedge funds, the other agent currently labeled

“households” in the model now also contains all the other non–hedge fund institutional in-

vestors, including mutual funds and other investment advisors. To the extent that these

institutions’ risk-bearing capacity can also be affected by shocks to dealer banks and broker-

dealers, then equation 16 from the model extension in appendix B makes clear that the

coefficient instead identifies the relative strength of hedge funds’ risk-bearing capacity re-

sponse with respect to the strength of the response of the other agent—which is now an
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amalgamation of mutual funds, non–hedge fund investment advisors, other institutional in-

vestors, and retail investors. Thus, while the comparison group for my baseline measure of

residual intermediation is dominated by retail investors, when I sort on hedge fund holdings,

the comparison group is now largely dominated by the other institutional investors, and

especially mutual funds. Hence, a more accurate reading of the significantly positive coeffi-

cients for hedge funds in Table 9 is that hedge funds’ risk-bearing capacity is more responsive

to intermediary shocks relative to the responsiveness of this residual group of direct equity

market participants. This directly supports the hypothesis that hedge funds should be more

responsive to intermediary shocks than other institutional investors because of their more

direct relationship.

This all being said, my results so far do suggest that the risk-bearing capacity of mu-

tual funds and other non-hedge fund investment advisors also responds to shocks to dealer

banks and broker-dealers. What might explain the connection? I now examine two potential

mechanisms: 1) transmission of exposure to dealer banks and broker-dealers via interac-

tions with dealer-exposed hedge funds in equity markets; and 2) exposure from investing

in other asset classes (particularly bond markets) that are heavily intermediated by dealer

banks/broker-dealers.

I first investigate whether these shocks can be passed through to mutual funds via in-

teraction with directly exposed hedge funds. To test this, I re-estimate ϵi,t in equation (8)

for all mutual funds and non–hedge fund investment advisors. I then examine the excess

returns of two versions of the high-minus-low quintile portfolios based off how much mutual

funds’ holdings line up with those of hedge funds. For the first group, I require a high degree

of alignment: stocks in the top quintile portfolio of ϵi,t estimated for mutual funds and non-

hedge fund investment advisors must also be in at least the top two quintiles when sorting on

ϵi,t estimated for hedge fund-only holdings; similarly, stocks in the bottom quintile portfolio

for non-hedge funds must also at least be in the bottom two quintiles based on hedge fund

holdings. In the second group, I form an alternative high-minus-low portfolio based on the

opposite set of stocks which have a low degree of holdings alignment with hedge funds: I

take the excess returns of top-quintile stocks that are in the bottom 3 quintiles of hedge fund

holdings, minus the bottom-quintile stocks that are also in the top 3 quintiles for hedge fund

holdings. Thus the analysis of “high hedge fund alignment” excess returns compares the

relative return responses to intermediary shocks of stocks with both high mutual fund and

high hedge fund holdings, to stocks with both low mutual fund and low hedge fund holdings.

On the other side, the analysis of “low hedge fund alignment” excess returns compares the

relative return responses to intermediary shocks of stocks with high mutual fund but low

hedge fund holdings, to stocks with low mutual fund but high hedge fund holdings.
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The results are included in the final four columns of Table 9. Columns (3) and (4) of

the table demonstrate that the top-minus-bottom-quintile excess returns of mutual funds

and non–hedge fund investment advisors covary strongly with intermediary shocks when

there is a high degree of alignment with hedge fund holdings. However, this is very much

not the case in the last two columns when the holdings of the groups are misaligned. This

pattern holds true for the contemporaneous (panel A) and predictive regressions (panel B),

and regardless of whether or not additional controls are included. This table, thus, suggests

that within-equity market interactions with dealer-exposed hedge funds are a transmission

mechanism for the broker-dealer shocks to pass on to mutual funds and other non–hedge

fund investment advisors. In the next subsection I show that the shock transmission is also

associated with deteriorating market liquidity conditions among the same set of stocks.

Next, to explore whether direct interaction with dealer banks in other asset classes ex-

poses mutual funds and non-hedge fund investment advisors to dealer shocks, I obtain in-

stitutional holdings data from FactSet. The advantage of the FactSet data in this regard

is that while they also categorize institutional investors into different classes of institutions,

they additionally allow me to link many investment managers at the financial institution

level (primarily for mutual funds) with their constituent individual funds. Furthermore, in

addition to security-level detail on holdings for equities, the FactSet data provide the size of

aggregated positions that individual funds take in other non-equity asset classes.26 I focus on

exposure to bond markets, including corporate bond and treasury markets. This is because

dealer banks and broker-dealers are the central intermediaries in corporate bond markets,

whose prices are particularly sensitive to their distress (Haddad and Muir, 2021; He et al.,

2022), while, for treasuries, dealer banks play a crucial role as the primary dealers and shocks

to their risk-bearing capacity can explain price patterns in these markets(Li and Xu, 2024).

Moreover, while mutual funds constitute the largest active investors in equity markets, they

are also very active in bond markets (He et al., 2022). Thus, mutual fund companies that

invest in both bond and equity markets may be exposed to the intermediation of dealer

banks and broker-dealers because of their direct interactions in bond markets.

I again re-estimate ϵi,t in equation (8), first for the mutual funds and non–hedge fund

investment advisors that are currently exposed to bond markets, and then for the set that

are not exposed to bond markets. The analysis is in Table 11. Constrained by FactSet data

availability, I can go back only to the first quarter of 2000 for this analysis. Supporting

the hypothesis that bond market exposure connects mutual funds’ marginal utility with

dealer banks and broker-dealers, I find a highly significant loading only when sorting on the

residual holdings of bond-exposed mutual funds—as can be seen when we compare columns

26I offer more details on the FactSet data in appendix C.3.
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(1) and (2) of Table 11, which focus on bond-exposed funds, and columns (3) and (4), which

include only the holdings funds with no bond market exposure. This is true whether or

not I include the full set of controls and whether I examine contemporaneous covariances in

panel A or conditional predictability in panel B. Overall, the results in the first two panels

of Table 11 support that investors who are likelier to interact directly with dealer banks and

broker-dealers are more exposed shocks to intermediary risk-bearing capacity.

5.2 Evidence of Liquidity Spirals

When broker-dealers and dealer banks suffer losses, their ability to provide funding liquidity

or to act as central intermediaries in diverse asset markets is hampered. As Brunnermeier

and Pedersen (2008) show, the resulting tighter conditions can cause dry-ups in market

liquidity, as the loss of access to capital or the scarce presence of intermediaries able to step

in and provide liquidity diminishes investors’ ability to trade freely. This can in turn trigger

more losses, which worsens funding conditions and causes further market liquidity dry-ups—

a “liquidity spiral.” Under such a mechanism, when dealer banks/broker-dealers experience

hard times, we should expect to see larger dry-ups in market liquidity among equities largely

held by more dealer-connected financial institutions.

I now present an empirical test to show that such a mechanism can speak to my findings.

In particular, I compute the portfolio equal-weighted average growth rate in the stock-level

Amihud (2002) illiquidity index and take the difference for each of the top-minus-bottom-

quintile portfolios for the different versions of residual intermediation ϵi,t discussed in the

previous subsection. I then regress the relative illiquidity growth on the intermediary shock

and the non-financial market index and controls:27

∆ log
(
Illiq

)Q5,j

t+1
−∆ log

(
Illiq

)Q1,j

t+1
= αj + δ1,jIntermediary Shockt+1

+ δ2,j(MktNonFin
t+1 −Rf,t) + δ3,jXt+1,j + ψi,t+1

(15)

Here, Q5 and Q1 denote the top- and bottom-quintile portfolios, and j indexes the

versions of residual intermediation for different groups of institutions. The results from my

estimating (15) are in Table 10. In the first two columns, I use my baseline measure of

27The Amihud (2002) index for stock k over time period t (in this case, a quarter) is defined as

Illiqk,t =
1

Dk,t

Dk,t∑
τ=1

|Rk,τ |
V OLDk,τ

where τ indexes trading days in period t, Dk,t is the number of trading days available for stock k in period
t, |Rk,τ | is the absolute value return on stock k on trading day τ , and V OLDk,τ is the dollar trading value
for stock k on trading day τ .
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ϵi,t. Columns (3) and (4) focus on the holdings of hedge funds; columns (5) and (6) form

portfolios based on the holdings of mutual funds/non–hedge fund investment advisors, but

also require stocks to have a high amount of alignment with the holdings of hedge funds; and,

finally, columns (7) and (8) form portfolios based on the holdings of mutual funds/non–hedge

fund investment advisors, but instead where there is a low amount of alignment with hedge

fund holdings. Negative intermediary shocks strongly predict relative liquidity dry-ups for

my baseline portfolio. This is concentrated particularly among stocks held intensively by

hedge funds or mutual funds trading in stocks with high degree of hedge fund alignment;

there is no relationship in relative declines in liquidity conditions for stocks with low hedge

fund alignment. This holds true when I control only for the non-financial market factor or

when I include the full complement of risk factor controls. This is consistent with Jylhä,

Rinne, and Suominen (2013), who argue that hedge funds typically supply liquidity to other

institutions such as mutual funds but demand liquidity in crisis times when funding dries up.

This results in worsening liquidity conditions for stocks held by hedge funds, or those held

by other institutions that are likelier to encounter hedge funds as natural liquidity providers.

In terms of magnitudes, a negative intermediary shock of one standard deviation reduces

liquidity for the highly intermediated portfolio of stocks by approximately 10% (in annualized

terms) for my baseline sort or within the high hedge fund alignment group. This figure is 6%

for hedge funds (though again these magnitudes are not strictly comparable for the reasons

described in the previous section).

I do a related analysis in panel C of Table 11, which shows that relative liquidity dry-ups

in response to the intermediary shock are also much more strongly concentrated among stocks

held intensively by the bond–exposed mutual funds and non–hedge fund investment advisors

who are more likely to be directly exposed to dealer intermediation in bond markets. Thus,

a central consequence of shocks to the intermediation capacity of dealer banks and broker-

dealers is the deteriorating market liquidity conditions of the stocks that dealer-exposed

institutions trade in.

5.3 Ruling Out Explanations Related to Mutual Fund Flow–Driven

Price Pressures

One concern with my findings could be that retail investors make withdrawals from mutual

funds in crisis periods and these flows happen to correlate with my measures of intermediary

risk-bearing capacity. For example, Ben-David et al. (2012) show that mutual funds also

suffered redemptions in the crisis period, although they were not as severe as those of hedge

funds. A literature starting with Sirri and Tufano (1998) documents a flow–performance
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relationship in the mutual fund sector, which could generate a spiral of price declines as

outflows force liquidations that further reduce performance. Moreover, these redemptions

could have been driven by households that invest in mutual funds rather than anything

originating in the intermediary sector. I now demonstrate that such a mechanism cannot

account for my results.

To do this, I show that different ways of controlling for mutual fund flows do not affect my

findings. I explore controlling for two measures to capture a broad range flow-related prices

pressures. I follow Lou (2012) in creating a stock-level measure of mutual fund flow-induced

trading; I then average flow-induced trading for portfolios sorted on residual intermediation

and create a high-minus-low index of relative flow-induced trading pressure, following Li

(2022).28 I also control for systematic fund flow shocks from Dou et al. (2023).29 Dou et al.

(2023) establish that mutual funds intentionally tilt their portfolios away from stocks that

naturally covary with common shocks to mutual fund flows so as to hedge away flow-related

risk; the result is that common movements in mutual fund flows command a risk premium

in equity markets.

In Table A.7 I regress the high- minus low-intermediation portfolio excess returns on the

intermediary shock, and I explore what happens to the coefficient on the intermediary shock

when I add controls for these flow-related measures. All specifications in this table addi-

tionally include controls for Fama and French (2015) risk factors, the non-financial market

factor, and the momentum factor. In the first column, I show the baseline full-sample coef-

ficient on the intermediary shock without fund flow controls for ease of comparison. Since

both Lou (2012) and Li (2022) show that flow-induced price pressures can mean revert, in

the second column of Table A.7, I control for both contemporaneous and lagged relative

flow-induced trading. While lagged relative flow-induced trading does obtain a significantly

negative coefficient in column (2), controlling for it has zero effect on the intermediary shock

coefficient estimate (the coefficient in column (1) is 4.74, with t-stat of 4.5, while the coeffi-

cient estimate in column (2) is 4.64 with t-stat of 4.35). Thus the price pressures from pure

relative flow-induced trading are quite uncorrelated with the dealer-induced intermediary

shocks that are my main focus.

Next, I control for different versions of the Dou et al. (2023) systematic fund flow shocks.

Again for ease of comparison, in the third column I report my baseline estimates without

28See appendix C.4 for details on data construction. Consistent with these papers, in appendix C.4 I
verify that fund inflows induce upward price pressure on stocks which subsequently mean reverts, so that
contemporaneous flow-induced trading over the quarter covaries positively with returns, while flow-induced
trading in the prior quarter predicts it negatively, and both in a statistically significant manner.

29I thank Winston Dou, Leonid Kogan, and Wei Wu for generously sharing their systematic fund flow
shock data.
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flow controls, but now for the sample period where I can observe the Dou et al. (2023) mea-

sures, which starts in the second quarter of 1991. In the columns (4) and (5), I control for

two versions of the Dou et al. (2023) systematic fund flow shocks created from either CRSP

or MorningStar mutual fund holdings data. I obtain a negative coefficient on contempora-

neous systematic flows and positive coefficient on lagged systematic flows, with both being

significant at the 10% level for the MorningStar version of the measure. However, these

columns also show that differential exposure to systematic fund flow shocks cannot explain

my findings, as the coefficient on the intermediary shock is essentially unaffected in terms of

both magnitude and statistical significance by the inclusion of these measures. Finally, the

result is also the same when I include all contemporaneous and lagged flow-related controls

in column (6), including both versions of the Dou et al. (2023) measures, in addition to the

relative flow-induced trading price pressures: while some of the flow controls do significantly

relate to the spread portfolio excess returns, the coefficient on the intermediary shock with-

out flow controls in this sample period is 4.26 (with t-stat of 4.27), versus a coefficient of

4.28 (with t-stat of 4.03) with the entire set of flow controls.

In summary, while these flow-based forces do have at least some explanatory power for

returns for portfolios sorted on residual intermediation, this appears to be nearly orthogonal

to the relative price pressures induced by my intermediary shock measure and, hence, con-

trolling for them cannot explain my findings. Instead, the estimates in this paper are more

consistent with frictions originating in the financial sector spilling over into differential price

movements within equity markets.

6 Conclusion

Building on theoretical and empirical work that features constrained intermediaries as

marginal investors, I show that the asset holdings of financial institutions generate higher

covariances of more intermediated stocks with shocks to intermediary risk-bearing capacity,

via temporary differential movements in discount rates. After stock fundamentals are ac-

counted for, the excess returns of stocks held more by financial intermediaries covary more

with shocks to intermediaries’ ability to take on risk, and state variables capturing the health

of financial intermediaries better predict the returns of the highly intermediated stocks than

those of the less-intermediated stocks. The beta on shocks to intermediary risk-bearing ca-

pacity on a portfolio formed on the most-intermediated stocks is more than 5 times higher

than the beta on the least-intermediated portfolio, despite my constructing the portfolios to

net out any differences in size, book to market, investment (asset growth), profitability, and

CAPM betas. In terms of return predictability, I can attribute between 23% and 44% of
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the time variation in equity premia in the least-intermediated portfolio, 38% and 59% in the

most intermediated portfolio, and nearly all of the gap in conditional relative predictability

between the two portfolios to time variation in intermediary risk-bearing capacity.

All of these findings are concentrated among institutional investors whose investment

activities make them more connected with dealer banks and broker-dealers. My findings are

especially prominent for hedge funds; they are also stronger when mutual funds are likely

to interact directly with hedge funds in equity markets or for mutual funds that invest in

dealer-intermediated bond markets.

Previous empirical papers testing frictional intermediary asset pricing theories have tended

to focus on asset markets that are comparatively difficult for households to access. By con-

trast, I demonstrate that effects predicted by intermediary asset pricing models persist even

among equities, which is perhaps the easiest asset class for households to directly access. In

this sense, the findings in this paper may provide a lower bound on the quantitative role of

intermediaries in affecting asset price movements in other asset classes.
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Figures

Figure 1: Annualized excess return for portfolios in the top and bottom intermediation (ϵi,t)
quintiles

Panel A: Top and bottom portfolios Panel B: Top-minus-bottom spread portfolio

This figure shows the time series of annualized quarterly excess returns on the top- and bottom-quintile equal-weighted
portfolios formed on the intermediation measure ϵi,t (panel A) and the difference between the two (panel B). Details on the
construction of ϵi,t are presented in section 4.1. Sample spans 1980q2 to 2017q3.
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Figure 2: Average quintile of given characteristic for top- and bottom-quintile intermediation (ϵi,t) portfolios

Percentage intermediated Book to market Size

CAPM β Profitability Investment

This figure shows the average quintile values over time on given characteristics for top- and bottom-quintile equal-weighted portfolios formed on the intermediation measure
ϵi,t. Details on the construction of ϵi,t are presented in section 4.1. Sample spans 1980q2 to 2017q3.
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Figure 3: Coefficients on intermediary shocks and market risk over portfolios formed on
intermediation quintile

Intermediary shock beta Market risk factor Beta

This figure plots coefficients from a regression as in (9) of the main text. The figure on the left shows the coefficient estimates
on the average of the standardized Federal Reserve primary dealer equity capital ratio shocks from He et al. (2017) and the
broker-dealer book leverage growth shocks from Adrian et al. (2014) for five portfolios formed on the intermediation measure
ϵi,t (constructed to be uncorrelated with fundamental stock characteristics; section 4.1 discusses this in more detail), as well
as the coefficient on the intermediary shocks for the top-minus-bottom-quintile spread. The figure on the right shows the
corresponding betas on a version of the value-weighted market risk factor that excludes returns on financial stocks (SIC codes
between 6000 and 6999). The confidence bands represent 95% confidence intervals computed from Newey–West standard errors
with Newey and West (1994) optimal lags. The intermediary shock measure is standardized, and returns are in annualized
percentage form. Sample spans 1980q2 to 2017q3.
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Figure 4: Betas on portfolios sorted by intermediation on different shocks to intermediary
risk-bearing capacity

Intermediary shock beta Capital shock beta

Leverage shock beta Financial sector return beta

This figure presents estimates from a regression as in (9) of the main text for each of the proposed intermediary shocks for each
of the five portfolios formed on quintiles of the intermediation measure ϵi,t constructed in section 4.1 of the main text, as well
as the top-minus-bottom-quintile portfolio spread. The capital shocks refer to the Federal Reserve primary dealer equity capital
ratio shocks proposed in He et al. (2017), while the leverage shocks refer to the broker-dealer leverage shocks from Adrian et al.
(2014). Intermediary shocks refer to the average of the standardized leverage and capital shocks. Financial sector return is the
value-weighted return on the financial sector (stocks with SIC codes between 6000 and 6999). Regressions control for a version
of the value-weighted market risk factor that excludes financial stocks. The intermediary shock measure is standardized, and
returns are in annualized percentage form. Error bands represent 95% Newey–West confidence intervals with Newey and West
(1994) optimal lags. Sample spans 1980q2 to 2017q3.
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Figure 5: Betas on portfolios sorted by intermediation for capital and leverage shocks in-
cluded in same specification

Capital shock beta Leverage shock beta

This figure presents estimates from regressions as in (10) of the main text:

Re
t = β0,i + β1,iCapital Shockt + β2,iLeverage Shockt + β3,i

(
MktNonFin − Rf

)
t
+ ϵi,t

The plots show betas on capital and leverage shocks included together in the same specification and for each of the five portfolios
formed on quintiles of the intermediation measure ϵi,t constructed in section 4.1 of the main text, as well as the top-minus-
bottom-quintile portfolio spread. The capital shocks refer to the Federal Reserve primary dealer equity capital ratio shocks
proposed in He et al. (2017), while the leverage shocks refer to the broker-dealer leverage shocks from Adrian et al. (2014).
Error bands represent 95% Newey–West confidence intervals with Newey and West (1994) optimal lags. Sample spans 1980q2
to 2017q3.
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Figure 6: Predictability of lagged intermediary risk-bearing capacity for one-month high-
minus-low-intermediation spread portfolio returns at different horizons

Coefficient R2

This figure shows coefficients obtained from predictive regressions of the one-month high-minus-low return spread for portfolios
formed on the top and bottom quintiles of the intermedation measure ϵi,t (constructed in section 4.1 of the text) on predictor
ηt at different monthly horizons. Regressions are of the form

R5,t+k −R1,t+k = α+ βkηt + νt

as in equation (12) in the main text. The horizon k varies from 1 month to 18 months. The predictor ηt is the average of
the standardized primary dealer squared leverage from He et al. (2017) and the negative of standardized broker-dealer leverage
from Adrian et al. (2014). The gray shaded area corresponds to 90% Newey–West confidence intervals with Newey and West
(1994) optimal lags.
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Tables

Table 1: Fama–Macbeth regressions of percentage stock ownership by intermediaries on
baseline stock characteristics

Percentage Intermediatedi,t

Log Book Equity 0.061∗∗∗

(16.55)

Log Book Equity Sq. -0.0047∗∗∗

(-12.07)

Profitability 0.027∗∗

(2.45)

CAPM Beta 0.046∗∗∗

(5.32)

Asset Growth 0.016∗∗∗

(2.76)

Book/Market -0.013∗∗∗

(-6.71)

Observations 214448
Average R2 0.11

This table shows the Fama–Macbeth time series average coefficients from the cross-sectional regression in (8):

Percentage Intermediatedi,t = αt + βtXi,t + ϵi,t

for stocks included in the sample. At each time t, the top 1% of observations of Percentage Intermediatedi,t are winsorized to
deal with outliers in the cross section of institutional holdings. T -statistics in parentheses are computed with Fama–Macbeth
standard errors, robust to 8 lags of autocorrelation. Average R2 refers to the time-series average of the R-squared from each
cross-sectional regression. The sample ranges from 1980q2 to 2017q3.

53



Table 2: Summary statistics of stock characteristics for portfolios sorted on quintiles of

intermediation measure ϵi,t

Panel A: Portfolio Characteristic Means

% Inst Log(ME) Log(BE) BE/ME Asset Growth Prof/BE CAPM β

Q1 .19 6.86 6.18 .89 .14 .22 1.17
Q2 .34 7.21 6.51 .92 .12 .23 1.12
Q3 .42 7.24 6.51 .91 .12 .23 1.16
Q4 .5 7.14 6.43 .88 .13 .23 1.18
Q5 .62 6.91 6.18 .88 .14 .22 1.18

Panel B: Portfolio Characteristic Medians

% Inst Log(ME) Log(BE) BE/ME Asset Growth Prof/BE CAPM β

Q1 .16 6.76 5.84 .8 .14 .22 1.16
Q2 .31 7.16 6.22 .83 .12 .23 1.1
Q3 .4 7.24 6.27 .81 .12 .23 1.13
Q4 .5 7.12 6.19 .81 .13 .23 1.17
Q5 .63 6.92 5.88 .81 .14 .22 1.18

This table shows the means and medians of percentage holdings by institutional investors
(mutual funds, hedge funds, and investment advisors), log market equity, log book equity,
book to market, asset growth (investment), profitability to book equity, and pre-ranking
CAPM beta for the 5 portfolios formed on quintiles of the intermediation measure ϵi,t.
Details on the construction of ϵi,t are presented in section 4.1. Sample spans 1980q2 to
2017q3.

Table 3: Return summary stats for portfolios formed on quintiles of intermediation measure

ϵi,t

Q1 Q2 Q3 Q4 Q5 Q5-Q1

µ(Ex Ret) 9.92 11.01 10.16 11.03 9.07 -.86
t-stat 6.75 6.69 6.6 6.45 5.45 -1.53
σ(Ex Ret) 38.66 37.47 39.55 40.04 41.74 11.2
Sharpe Ratio .26 .29 .26 .28 .22 -.08

This table reports the means, standard deviations, and Sharpe Ratios for the percentage
annualized excess returns for portfolios formed on quintiles of intermediation measure ϵi,t.
Details on the construction of ϵi,t are presented in section 4.1. Sample spans 1980q2 to
2017q3.
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Table 4: Regressions of excess returns for portfolios formed on intermediation measure ϵi,t
on contemporaneous intermediary shocks

Q1 Q2 Q3 Q4 Q5 Q5-Q1

Intermediary Shock 1.148 2.714∗∗∗ 3.556∗∗∗ 3.782∗∗∗ 5.234∗∗∗ 4.086∗∗∗

(1.52) (3.07) (3.95) (3.17) (4.60) (5.51)

MktNonFin − Rf 1.092∗∗∗ 1.042∗∗∗ 1.081∗∗∗ 1.072∗∗∗ 1.101∗∗∗ 0.009
(49.74) (26.36) (27.68) (18.43) (28.28) (0.25)

Observations 150 150 150 150 150 150
R2 0.88 0.90 0.89 0.86 0.87 0.14

This table reports regressions of the intermediation measure ϵi,t portfolio quintile excess returns (and top minus bottom
quintile spread) on risk factors as in (9) of the main text:

Ri
t+1 −Rf,t = αi + β1,iIntermediary Shockt+1 + β2,i(MktNonFin

t+1 −Rf,t) + νi,t

For the i = Q1 through Q5 quintile portfolios formed on ϵi,t, as well as the high- minus- low-quintile (Q5−Q1) portfolio excess
returns. The first row of this table reports the coefficient estimates on the composite intermediary shock, which is the average
of the standardized Federal Reserve primary dealer equity capital ratio shocks from He et al. (2017) and the broker-dealer
book leverage growth shocks from Adrian et al. (2014). The intermediation measure ϵi,t is constructed to be uncorrelated
with fundamental stock characteristics; section 4.1 discusses this in more detail. The second row shows the betas on a version
of the value-weighted market risk factor that excludes returns on financial stocks (SIC codes between 6000 and 6999). The
sample is quarterly and comprises 1980q2 to 2017q3. Newey–West t-statistics with Newey and West (1994) optimal lags are in
parentheses. Quarterly excess returns are in annualized percentage form, and the intermediary shock is standardized. Sample
spans 1980q2 to 2017q3.

Table 5: Changes in He et al. (2017) intermediary capital betas around S&P 500 inclusion

(1) (2) (3) (4) (5) (6)

Join S&P 500 0.10∗∗∗ 0.11∗∗∗ 0.10∗∗∗ 0.10∗∗∗ 0.11∗∗∗ 0.10∗∗∗

(3.24) (3.13) (2.86) (3.07) (3.75) (3.00)

Observations 363 363 363 363 363 363
Comparison Group Size Size, Beta Size, B/M Size, Profit Size, Invest Size, Momentum

This table compares the coefficient of the He et al. (2017) intermediary capital risk factor for stocks before and after they enter
the S&P 500. To be specific, it tests whether the difference-in-difference estimate

∆β̂HKM
i,t −

1

Ni,t

∑
j∈Comp Groupi,t

∆β̂HKM
j,t

for stocks i joining the S&P 500 is significantly different from zero; Ni,t is the number of comparison firms for stock i in the
month stock i joined the index, and firms j are those in the given comparison group. I measure the betas on the He et al.
(2017) capital risk factor in the 30 months leading up to S&P 500 inclusion and the 30 months following and leave out the event
month. I control for exposures to the Fama and French (2015) 5 factors plus momentum factor when estimating He et al. (2017)
betas. I then compare the change in intermediary capital betas with the average intermediary capital betas for stocks in the
same size quintile in that year (first column) or the same size quintile interacted with either CAPM beta, B/M, profitability,
investment, or momentum (columns (2) through (6)): Stocks must have full coverage of returns before and after the event to
be included. T -statistics in parentheses are based on Driscoll–Kraay standard errors that account for cross-sectional correlation
and up to 60 lags, to allow for error correlation between observations with overlapping estimation windows for beta changes.

55



Table 6: Predictive regressions of excess returns for portfolios formed on intermediation
measure ϵi,t on lagged intermediary risk-bearing capacity

Q1 Q2 Q3 Q4 Q5 Q5-Q1

Intermediary Risk Aversion ηt 5.43∗ 6.20∗ 7.15∗∗ 7.34∗∗ 8.15∗∗ 2.72∗∗∗

(1.77) (1.77) (2.00) (2.27) (2.31) (3.04)

Composite RP Zt 8.45∗∗∗ 8.38∗∗∗ 8.46∗∗∗ 8.13∗∗ 8.50∗∗∗ 0.056
(3.47) (3.31) (2.99) (2.61) (2.74) (0.05)

Observations 150 150 150 150 150 150
R2 0.081 0.093 0.095 0.091 0.097 0.056
RP η Variance Share Lower Bound 0.23 0.28 0.33 0.35 0.38 0.94
RP η Variance Share Upper Bound 0.44 0.49 0.54 0.57 0.59 0.9996

This table shows predictive regressions of the intermediation measure ϵi,t portfolio quintile excess returns on state variables ηt
and Zt:

Ri
t+1 −Rf,t = αi + β1,iηt + β2,iZt + νi,t

where ηt is a measure of intermediary risk aversion defined in the main text and i = Q1, . . . , Q5 denotes quintiles of portfolios
sorted on residual intermediation ϵi,t. The final column reports the coefficient for the regression with the high- minus low-

residual intermediation portfolio excess return (RQ5
t+1 − RQ1

t+1) on the left hand side. The control Zt is a composite predictor
for the conditional equity risk premium, constructed by taking the 14 predictor variables from Welch and Goyal (2008); the
consumption-wealth ratio (cay) from Lettau and Ludvigson (2001); the aligned investor sentiment index from Huang et al.
(2014); the aggregate short selling index of Rapach et al. (2016); and the investor attention index from Chen et al. (2022)
and applying PLS to create an optimized single aggregate stock market return predictor from the information in each of these
variables. T-statistics based on Newey-West standard errors with Newey and West (1994) optimal lags are in parentheses. The
lower bound on the share of predictability coming from η is derived by regressing the given portfolio returns on a version of η that
has been orthogonalized with respect to Zt and comparing the resulting R2 relative to the R2 from the full bivariate regression
reported in the table. The upper bound is derived in the same manner, except using the raw instead of orthogonalized version
of η. Quarterly excess returns are in annualized percentage form and the independent variables are standardized. Sample spans
1980q2 to 2017q3.
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Table 7: Panel regressions of stock excess returns on contemporaneous intermediary shocks
interacted with intermediation measure ϵi,t

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Intermediary Shock × ϵi,t 8.13∗∗∗ 7.14∗∗∗ 7.71∗∗∗

(5.01) (4.10) (3.72)

Capital Shock × ϵi,t 0.15∗∗∗ 0.14∗∗ 0.17∗∗∗

(3.24) (2.28) (2.77)

Leverage Shock × ϵi,t 0.060∗∗ 0.060∗∗∗ 0.068∗∗

(2.58) (2.62) (2.50)

Ex Ret (Fin.) × ϵi,t 0.18∗∗∗ 0.21∗∗ 0.20∗

(3.02) (2.10) (1.94)

MktNonFin − Rf × ϵi,t 0.064 0.021 -0.037 0.16∗ 0.11 0.074
(0.69) (0.18) (-0.26) (1.91) (1.07) (0.51)

SMB × ϵi,t 0.089 0.085 0.10
(0.68) (0.65) (0.78)

HML × ϵi,t -0.13 -0.17 -0.065
(-0.92) (-1.18) (-0.37)

CMA × ϵi,t -0.059 -0.035 -0.16
(-0.40) (-0.24) (-1.05)

RMW × ϵi,t 0.52∗∗∗ 0.53∗∗∗ 0.50∗∗∗

(3.94) (4.01) (3.81)

UMD × ϵi,t -0.093 -0.081 -0.070
(-1.42) (-1.21) (-1.06)

ϵi,t -0.050∗∗∗ -0.053∗∗∗ -0.054∗∗∗ -0.051∗∗∗ -0.053∗∗∗ -0.054∗∗∗ -0.056∗∗∗ -0.058∗∗∗ -0.059∗∗∗

(-6.32) (-6.56) (-6.44) (-6.22) (-6.43) (-6.37) (-6.09) (-6.38) (-6.31)

Stock Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Time Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations 211255 211255 211255 211255 211255 211255 211255 211255 211255
R2 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24

This table shows estimates from panel regressions as in (13) of the main text:

Ri,t+1 −Rf,t = α0 + β1Ft+1 × ϵi,t + β2Wt+1 × ϵi,t + αt + αi + νi,t+1

Here, Ft+1 denotes shocks to intermediaries, and Wt+1 controls for other common shocks. The capital shocks refer to the
Federal Reserve primary dealer equity capital ratio shocks proposed in He et al. (2017), while the leverage shocks refer to the
broker-dealer leverage shocks from Adrian et al. (2014). Intermediary shocks refer to the average of the standardized leverage
and capital shocks. Financial sector return is the value-weighted return on the financial sector (stocks with SIC codes between
6000 and 6999). Regressions control for a version of the value-weighted market risk factor that excludes financial stocks.
Controls SMB, HML, CMA, RMW, UMD refer to the Fama and French (2015) risk factors and the up-minus-down momentum
factor. In parentheses are t-statistics clustered by both firm and time to adjust for cross-sectional and time-series correlation in
the residuals. The intermediary shock measure is standardized, and returns are in annualized percentage form. Sample spans
1980q2 to 2017q3.
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Table 8: Panel Regressions of rolling stock-level intermediary betas on intermediation mea-

sure ϵi,t

Intermediary Shock Capital Shock Leverage Shock Ex Ret (Fin.)

ϵi,t 5.90∗∗∗ 0.14∗∗∗ 0.066∗∗∗ 0.20∗∗∗

(3.71) (3.88) (3.19) (3.68)

Stock Fixed Effects Yes Yes Yes Yes
Time Fixed Effects Yes Yes Yes Yes
Controls Yes Yes Yes Yes
Observations 130069 130069 130069 130069
R2 0.50 0.52 0.44 0.54

This table shows the results from regressions of rolling individual stock betas on the residual intermediation measure ϵi,t
(constructed to be uncorrelated with fundamental stock characteristics; section 4.1 discusses this in more detail). Stock betas
are obtained from regressions of the form

Ri,t −Rf,t = αi + βiFt + βM
i

(
MktNonFin

t − Rft
)
+ δi,t

in a window of plus or minus 15 quarters. I require a full window of observations for the estimated stock betas to be included
in the sample. Reported coefficients are then estimated from panel regressions taking the form

β̂i,t−15→t+15 = α0 + β1ϵi,t + β2Zi,t + αt + αi + νi,t

Controls Zi,t include gross profitability, investment (asset growth), CAPM beta, book to market, second-degree polynomial in
log market cap and log book equity, plus stock and time fixed effects. In parentheses are t-statistics double-clustered by stock
and quarter. Returns and risk factors are expressed in annualized percentage terms, with the exception of the intermediary
shock, which is standardized to have zero mean and unit variance. Sample spans 1980q2 to 2017q3.
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Table 9: Regressions of high- minus low-residual intermediation portfolio returns on inter-
mediary variables: the role of hedge funds

Panel A: Contemporaneous Regressions

Hedge Funds Only High HF Alignment Low HF Alignment

(1) (2) (3) (4) (5) (6)

Intermediary Shock 2.50∗∗∗ 2.76∗∗ 3.63∗∗∗ 4.50∗∗∗ 2.05 1.96
(2.69) (2.58) (3.61) (3.36) (1.44) (1.24)

MktNonFin − Rf -0.00078 0.021 0.013 0.040 -0.034 0.030
(-0.03) (0.79) (0.42) (0.63) (-0.66) (0.57)

Additional Risk Factor Controls No Yes No Yes No Yes
Observations 150 150 150 150 150 150
R2 0.063 0.13 0.066 0.12 0.017 0.17

Panel B: Predictive Regressions

Hedge Funds Only High HF Alignment Low HF Alignment

(1) (2) (3) (4) (5) (6)

Intermediary Risk Aversion ηt 1.88∗∗ 1.83∗∗ 3.25∗∗∗ 2.99∗∗∗ 1.18 1.35
(2.54) (1.99) (2.70) (2.69) (1.18) (1.37)

Composite RP 0.20 1.22 -0.78
(0.20) (0.89) (-0.75)

PLS RP Predictor Control No Yes No Yes No Yes
Observations 150 150 150 150 150 150
R2 0.036 0.037 0.047 0.053 0.0075 0.011

This table shows the results from regressions of the top-minus-bottom-quintile returns for portfolios formed on residual inter-
mediation measure ϵi,t on the intermediary shock and intermediary risk aversion proxy ηt. The contemporaneous regressions
in panel A are of the form

RQ5
i,t+1 −RQ1

i,t+1 = α+ β1Intermediary Shockt+1 + β2(MktNonFin
t+1 −Rf,t) + β3Xt+1 + νt+1

and the predictive regressions in panel B are of the form

RQ5
i,t+1 −RQ1

i,t+1 = α+ β1ηt + β2Zt + νt+1

Here, ϵi,t is formed on the basis of the percentage holdings for different classes of financial institutions. In the first two columns,
I form portfolios on ϵi,t estimated from the holdings of hedge funds. I identify hedge funds in the 13F data using a list of
hedge fund managers from Agarwal et al. (2024). In the last four columns, I form portfolios by sorting stocks into the top
and bottom quintiles of residual intermediation ϵi,t from equation (8), based on the holdings of mutual funds and non–hedge
fund investment advisors only, which I then split into two groups. The “High HF Alignment” group requires the stocks in
the top (bottom) quintile of ϵi,t to also be in the top two (bottom two) quintiles of residual intermediation based on hedge
fund holdings; the “Low HF Alignment” group compares the responses for the stocks in the top minus bottom quintiles of ϵi,t,
but within the opposite respective quintiles of hedge fund holdings as the “High HF Alignment”. The additional risk factor
controls in panel A include the Fama and French (2015) risk factors and the up-minus-down momentum factor. The predictive
regressions in panel B row control for the composite risk premium measure Zt from Table 6 obtained via PLS. Newey–West
t-statistics with Newey and West (1994) optimal lags are reported in parentheses.
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Table 10: Regressions of Amihud (2002) illiquidity growth for portfolios formed on intermediation measure ϵi,t on contempora-
neous intermediary shocks, by institution type

Baseline Hedge Funds High HF Alignment Low HF Alignment

(1) (2) (3) (4) (5) (6) (7) (8)

Intermediary Shock -9.95∗∗∗ -10.3∗∗∗ -5.99∗∗∗ -6.20∗∗∗ -10.2∗∗∗ -10.3∗∗∗ -3.15 -3.05
(-4.64) (-4.14) (-3.16) (-3.11) (-3.78) (-3.44) (-1.43) (-0.86)

MktNonFin − Rf 0.18∗∗ 0.12 0.0074 -0.061 0.13 0.055 0.30∗∗∗ 0.25∗∗

(2.02) (1.03) (0.11) (-1.14) (1.11) (0.39) (3.07) (2.00)

Additional Risk Factor Controls No Yes No Yes No Yes No Yes
Observations 150 150 150 150 150 150 150 150
R2 0.081 0.12 0.058 0.13 0.061 0.089 0.056 0.070

This table shows the results from regressions of the equal-weighted average growth rates of the Amihud (2002) illiquidity index for portfolios formed on intermediation measure
ϵi,t (and the top-minus-bottom-quintile spread) on risk factors as in (15) of the main text:

∆log (Illiq)5,t+1 −∆log (Illiq)1,t+1 = α+ δ1Intermediary Shockt+1 + δ2(MktNonFin
t+1 −Rf,t) + δ3Xt+1 + υi,t+1

The first row of this table shows the coefficient estimates on the average of the standardized Federal Reserve primary dealer equity capital ratio shocks from He et al. (2017)
and the broker-dealer book leverage growth shocks from Adrian et al. (2014) for five portfolios formed on the intermediation measure ϵi,t (constructed to be uncorrelated with
fundamental stock characteristics; section 4.1 discusses this in more detail), as well as the coefficient on the intermediary shocks for the top-minus-bottom-quintile spread. The
second row shows the betas on a version of the value-weighted market risk factor that excludes returns on financial stocks (SIC codes between 6000 and 6999). The sample
is quarterly and comprises 1999q2 to 2017q3. Newey–West t-statistics with Newey and West (1994) optimal lags are in parentheses. Quarterly illiquidty growth rates are in
annualized percentage form, and the intermediary shock is standardized.
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Table 11: Regressions of high-minus-low-residual-intermediation portfolio returns and illiq-
uidity growth on intermediary variables: Heterogeneity by mutual fund exposure to bond
markets

Panel A: Contemporaneous

Bond–Exposed MFs Not Bond–Exposed MFs

(1) (2) (3) (4)

Intermediary Shock 3.42∗∗∗ 3.82∗∗∗ 1.09∗ -0.051
(4.10) (4.63) (1.75) (-0.04)

MktNonFin − Rf -0.00077 0.061∗ -0.023 0.10∗

(-0.02) (1.73) (-1.21) (1.99)

Additional Risk Factor Controls No Yes No Yes
Observations 71 71 71 71
R2 0.11 0.22 0.011 0.13

Panel B: Predictive

Bond–Exposed MFs Not Bond–Exposed MFs

(1) (2) (3) (4)

Intermediary Risk Aversion ηt 2.65∗∗∗ 5.28∗∗∗ -1.17 -0.35
(3.69) (2.77) (-1.63) (-0.34)

Composite RP -2.47 -0.78
(-1.66) (-0.84)

PLS RP Predictor Control No Yes No Yes
Observations 71 71 71 71
R2 0.037 0.068 0.0078 0.011

Panel C: Contemporaneous (Relative Illiquidity Growth)

Bond–Exposed MFs Not Bond–Exposed MFs

(1) (2) (3) (4)

Intermediary Shock -8.69∗∗∗ -7.69∗∗∗ -2.42∗∗ -0.081
(-3.62) (-3.78) (-2.04) (-0.04)

MktNonFin − Rf 0.31∗∗∗ 0.27∗ 0.32∗∗∗ 0.25
(2.96) (1.75) (3.56) (1.60)

Additional Risk Factor Controls No Yes No Yes
Observations 71 71 71 71
R2 0.17 0.24 0.16 0.22

In this table I form portfolios from estimates of intermediation measure ϵi,t formed from the institutional holdings of non–hedge
fund mutual funds and investment advisors, split by whether they currently report exposure to bond markets (columns (1) and
(2)) or do not report such exposure (columns (3) and (4)). The holdings data and corporate bond exposure status come from
FactSet. Panel A of this table reports the results from contemporaneous regressions of the average returns of the high-minus-
low-intermediation portfolio formed from the top and bottom quintiles this alternative version of ϵi,t onto the intermediary
shock plus controls, as in panel A of Table 9. Panel B explores the results from predictive regressions as in Panel B of Table 9.
Panel C examines the contemporaneous average relative illiquidity response for the same portfolios, similarly to Table 10. See
appendix C.3 for details on the FactSet data and how institutions are classified. The FactSet sample spans 2000q1 to 2017q3.
Newey–West t-statistics with Newey and West (1994) optimal lags are in parentheses.
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Appendices

A Appendix Figures and Tables

Appendix Figures

Figure A.1: Time series of intermediary state variables and composite risk premium used in
predictability tests

This figure plots a time series of the state variables used in the return predictability tests reported in Tables 6 and A.1. Variables
are standardized to have mean zero and unit standard deviation. Sample spans 1980q2 to 2017q3.
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Appendix Tables

Table A.1: Predictability regressions of high- minus low-residual intermediation portfolio
excess returns with alternative intermediary predictors

(1) (2) (3) (4)

PD Lev. Squared 1.996∗∗ 1.989∗∗∗

(2.51) (2.78)

BD Lev. -1.425 -1.415
(-1.53) (-1.58)

Fin. Share -2.077∗∗∗ -2.029∗∗

(-3.43) (-2.37)

Composite RP Zt 0.065 0.397
(0.05) (0.32)

Observations 150 150 150 150
R2 0.057 0.032 0.057 0.034

This table shows predictive regressions of the intermediation measure ϵi,t portfolio top- minus bottom quintile portfolio excess
returns on different sets of state variables Xt and Zt:

RQ5
t+1 −RQ1

t+1 = α+ β1Xt + β2Zt + νt+1

where Xt either separately includes both the squared Federal Reserve primary dealer leverage from He et al. (2017) plus the
broker leverage ratio from Adrian et al. (2014), or just the financial sector wealth share (proxied by the share of market
capitalization in the aggregate stock market). The control Zt is a composite predictor for the conditional equity risk premium
(see main text or footnote to Table 6 for details). T-statistics based on Newey-West standard errors with Newey and West (1994)
optimal lags are in parentheses. Quarterly excess returns are in annualized percentage form and the independent variables are
standardized. Sample spans 1980q2 to 2017q3.
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Table A.2: Robustness: contemporaneous portfolio regressions

Original Add WRDS Ratios Just log(BE) Value-Weighted Drop Crisis
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Intermediary Shock 4.09∗∗∗ 4.74∗∗∗ 3.14∗∗∗ 3.15∗∗∗ 2.93∗∗∗ 4.80∗∗∗ 4.73∗∗∗ 4.93∗∗∗ 3.72∗∗∗ 3.42∗∗∗

(5.51) (4.51) (4.14) (4.23) (2.84) (3.84) (4.52) (3.70) (3.15) (2.77)

MktNonFin − Rf 0.0087 0.024 -0.025 0.037 0.16∗∗∗ 0.11∗∗ -0.0029 0.026 0.015 0.056
(0.25) (0.56) (-0.88) (1.28) (3.05) (2.16) (-0.07) (0.60) (0.36) (1.27)

Additional Controls No Yes No Yes No Yes No Yes No Yes
Observations 150 150 150 150 150 150 150 150 144 144
R2 0.14 0.23 0.074 0.18 0.23 0.38 0.080 0.12 0.078 0.18

This table contains the results from regressions of the excess returns of high-minus-low-residual-intermediation portfolio formed
from the top and bottom quintiles of intermediation measure ϵi,t on the contemporaneous intermediary shock, with controls
for other risk factors. The first two columns estimate the residual intermediation ϵi,t as done throughout the main text (and
described in section 4.1); the next two add 40 financial ratios obtained from WRDS to cross-sectional regression (8) from the
main text; columns (5) and (6) include only a second-degree polynomial in log book equity to estimate ϵi,t. Columns (7)/(8) and
(9)/(10) are, respectively, for value-weighted instead of equal-weighted portfolios and for a subsample that excludes the financial
crisis (2008q1 through 2009q2). Odd columns control only for a version of the value-weighted market factor that excludes returns
on financial stocks, and even columns add the Fama and French (2015) nonmarket risk factors plus the momentum factor. The
intermediary shock measure is formed as an average of the standardized shocks to primary dealer equity capital from He et al.
(2017) and broker-dealer leverage from Adrian et al. (2014). The intermediary shock measure is standardized, and returns are
expressed in annualized percentage form. Newey–West t-statistics with Newey and West (1994) optimal lags are in parentheses.
Sample spans 1980q2 to 2017q3.
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Table A.3: Robustness: predictive portfolio regressions

Original Add WRDS Ratios Just log(BE) Value-Weighted Drop Crisis

Intermediary Risk Aversion ηt 2.719∗∗∗ 2.687∗∗∗ 2.526∗∗ 3.540∗∗∗ 2.013∗∗∗

(3.04) (3.63) (2.33) (3.13) (3.07)

Composite RP Zt 0.056 -0.543 1.363 -0.084 -0.095
(0.05) (-0.55) (0.83) (-0.04) (-0.08)

Observations 150 150 150 150 144
R2 0.056 0.065 0.043 0.053 0.027

This table shows the results from predictability regressions of the excess returns of the high-minus-low-residual-intermediation portfolio formed from the top and bottom quintiles
of intermediation measure ϵi,t on ηt, a measure of intermediary risk aversion (given by the average of the standardized primary dealer squared leverage from He et al. (2017)
and the negative of standardized broker-dealer leverage from Adrian et al. (2014)):

RQ5
t+1 −RQ1

t+1 = α+ β1ηt + β2Zt + νt+1

The control Zt is the composite risk premium predictor used in Table 6 and constructed in section 4.2.2 of the main text. Regressions are for quarterly returns. The first column
contains the original characteristics used to back out residual intermediation ϵi,t (as used throughout the main text and described in section 4.1), while the second column
estimates residual intermediation ϵi,t by adding 40 financial ratios obtained from WRDS to the cross-sectional regression (8) used to obtain ϵi,t; the third column includes
only a second-degree polynomial in log book equity to estimate ϵi,t. The last two columns are, respectively, for value-weighted instead of equal-weighted portfolios and for a
subsample that excludes the financial crisis (2008q1 through 2009q2). Newey–West t-statistics with Newey and West (1994) optimal lags are in parentheses. All independent
variables are standardized, and returns are in annualized percentage form. Sample spans 1980q2 to 2017q3.
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Table A.4: Robustness: contemporaneous portfolio regressions (total 13F institutional hold-
ings)

Original Add WRDS Ratios Just log(BE) Value-Weighted Drop Crisis
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Intermediary Shock 3.74∗∗∗ 4.00∗∗∗ 2.80∗∗∗ 2.29∗∗∗ 2.77∗∗ 4.04∗∗∗ 4.45∗∗∗ 4.12∗∗∗ 3.50∗∗∗ 3.07∗∗∗

(5.17) (4.76) (3.50) (4.03) (2.17) (3.34) (4.17) (4.68) (2.75) (3.56)

MktNonFin − Rf -0.013 0.026 -0.048 0.032 0.094 0.093∗ -0.023 0.038 0.0014 0.061
(-0.39) (0.59) (-1.22) (1.25) (1.63) (1.68) (-0.47) (1.10) (0.04) (1.48)

Additional Controls No Yes No Yes No Yes No Yes No Yes
Observations 150 150 150 150 150 150 150 150 144 144
R2 0.10 0.25 0.061 0.23 0.13 0.34 0.088 0.18 0.060 0.23

This table contains the results from contemporaneous regressions of excess returns for the high-minus-low-residual-
intermediation portfolio formed from the top and bottom quintiles of intermediation measure ϵi,t on risk factors

RQ5
t+1 −RQ1

t+1 = α+ β1Intermediary Shockt+1 + β2(MktNonFin
t+1 −Rf,t) + β3Xt+1 + νt+1

Here, residual intermediation ϵi,t comes from total institutional holdings in the 13F data instead of only those from mutual
funds and investment advisors. The first two columns estimate the residual intermediation ϵi,t as done throughout the main
text (and described in section 4.1); the next two add 40 financial ratios obtained from WRDS to cross-sectional regression
(8) from the main text; columns (5) and (6) include only a second-degree polynomial in log book equity to estimate ϵi,t.
Columns (7)/(8) and (9)/(10) are, respectively, for value-weighted instead of equal-weighted portfolios and for a subsample that
excludes the financial crisis (2008q1 through 2009q2). Odd columns control only for a version of the value-weighted market
factor that excludes returns on financial stocks, and even columns add the Fama and French (2015) nonmarket risk factors plus
the momentum factor. The intermediary shock measure is formed as an average of the standardized shocks to primary dealer
equity capital from He et al. (2017) and broker-dealer leverage from Adrian et al. (2014). The intermediary shock measure is
standardized, and returns are expressed in annualized percentage form. Newey–West t-statistics with Newey and West (1994)
optimal lags are in parentheses. Sample spans 1980q2 to 2017q3.
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Table A.5: Robustness: Predictive portfolio regressions (total 13F institutional holdings)

Original Add WRDS Ratios Just log(BE) Value-Weighted Drop Crisis

Intermediary Risk Aversion ηt 2.418∗∗∗ 2.093∗∗∗ 2.346∗∗ 3.285∗∗ 2.310∗∗

(2.90) (2.67) (2.29) (2.53) (2.52)

Composite RP Zt 0.294 -0.191 0.789 0.944 0.325
(0.35) (-0.24) (0.77) (0.72) (0.38)

Observations 150 150 150 150 144
R2 0.050 0.045 0.034 0.060 0.040

This table shows the results from predictability regressions of excess returns for the high-minus-low-intermediation portfolio formed from the top and bottom quintiles of
intermediation measure ϵi,t on ηt, a measure of intermediary risk aversion (given by the average of the standardized primary dealer squared leverage from He et al. (2017) and
the negative of standardized broker-dealer leverage from Adrian et al. (2014)):

RQ5
t+1 −RQ1

t+1 = α+ β1ηt + β2Zt + νt+1

The control Zt is the composite risk premium predictor used in Table 6 and constructed in section 4.2.2 of the main text. Here, residual intermediation ϵi,t comes from total
institutional holdings in the 13F data instead of only those from mutual funds and investment advisors. Regressions are for quarterly returns. The first column contains the
original characteristics used to back out residual intermediation ϵi,t (as used throughout the main text and described in section 4.1), while the second column estimates residual
intermediation ϵi,t by adding 40 financial ratios obtained from WRDS to the cross-sectional regression (8) used to obtain ϵi,t; the third column includes only a second-degree
polynomial in log book equity to estimate ϵi,t. The last two columns are, respectively, for value-weighted instead of equal-weighted portfolios and for a subsample that excludes
the financial crisis (2008q1 through 2009q2). Newey–West t-statistics with Newey and West (1994) lags are in parentheses. All independent variables are standardized, and
returns are in annualized percentage form. Sample spans 1980q2 to 2017q3.
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Table A.6: Changes in institutional holdings around S&P 500 inclusion

∆ Total IO ∆ Mutual/Inv. Adv. IO

(1) (2) (3) (4)

Join S&P 500 0.040∗∗∗ 0.042∗∗∗ 0.020∗∗∗ 0.022∗∗∗

(4.51) (4.81) (2.95) (3.29)

Observations 189354 188873 189354 188873
R2 0.017 0.028 0.018 0.032
Size × Date FE X X X X
Stock FE X X

This table reports the results from regressions of the form

∆Institutional Onwershipki,t = βJoin S&P 500i,t + αSize quintile(i),t + αi + νi,t

where i indexes individual stocks, k denotes either all 13F institutions (columns (1) and (2)) or mutual funds and investment
advisors, Join S&P 500i,t is an indicator that stock i was added to the S&P 500 between the end of quarter t− 1 and the start
of quarter t, αSize quintile(i),t is stock size quintile×year fixed effects, and αi is stock fixed effects. The sample of stocks uses the
same restrictions as in Table 7 plus the restriction that stocks that ever leave the S&P 500 in the sample period are excluded.
T -statistics in parentheses are based on standard errors double-clustered by stock and date.
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Table A.7: Regressions of high-minus-low-residual-intermediation portfolio excess returns on intermediary variables, with con-
trols for mutual fund flow variables

(1) (2) (3) (4) (5) (6)
Base (Full Sample) Flow Induced Trading Base (DKW Sample) CRSP Common Flow MorningStar Common Flow All

Intermediary Shock 4.74∗∗∗ 4.64∗∗∗ 4.26∗∗∗ 4.41∗∗∗ 4.32∗∗∗ 4.28∗∗∗

(4.51) (4.35) (4.27) (4.59) (4.79) (4.03)

Common Fund FlowCRSP -2.57∗ -1.20
(-1.78) (-0.45)

Common Fund FlowMorningStar -2.47∗ -1.37
(-1.88) (-0.63)

Common Fund FlowCRSP , Lagged 0.40 -0.39
(1.28) (-0.39)

Common Fund FlowMorningStar, Lagged 0.45∗ 0.78
(1.93) (0.95)

Relative FIT 0.14 0.77∗∗∗

(0.74) (3.52)

Relative FIT, Lagged -0.21∗∗ -0.61∗∗∗

(-2.48) (-2.89)

Full Risk Factor Controls Yes Yes Yes Yes Yes Yes
Observations 150 149 105 105 105 105
R2 0.23 0.25 0.26 0.30 0.30 0.34

This table contains the results from regressions of excess returns for the high-minus-low-residual-intermediation portfolio formed from the top and bottom quintiles of interme-
diation measure ϵi,t on the contemporaneous intermediary shock, with controls for shocks related to mutual fund flows. Column (1) shows my baseline estimate for the full
sample period without any additional flow-related controls. Column (2) adds contemporaneous and lagged controls for a measure of relative flow-induced trading constructed
following (Lou, 2012; Li, 2022). For reference, column (3) shows the baseline estimate without flow controls, except during the Dou et al. (2023) sample period starting in
1991q3. Columns (4) and (5) control for different versions of systematic fund flow shocks from Dou et al. (2023), while column (6) additionally includes the relative flow-induced
trading controls. Full risk factor controls include the value-weighted market factor excluding returns on financial stocks plus Fama and French (2015) nonmarket risk factors and
the momentum factor). period, and column (4) does the same for the full sample period (1980q2 to 2017q3). See appendix C.4 for details on the construction of flow-induced
trading measures. Newey–West t-statistics with Newey and West (1994) optimal lags are in parentheses.

69



Table A.8: Panel regressions of stock excess returns on contemporaneous intermediary shocks
interacted with intermediation measure ϵi,t (with additional short interest and illiquidity
controls)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Intermediary Shock × ϵi,t 8.25∗∗∗ 6.74∗∗∗ 5.63∗∗∗

(4.98) (3.81) (2.66)

Capital Shock × ϵi,t 0.16∗∗∗ 0.14∗∗ 0.13∗∗

(3.44) (2.30) (2.17)

Leverage Shock × ϵi,t 0.054∗∗ 0.054∗∗ 0.048∗

(2.33) (2.35) (1.75)

Ex Ret (Fin.) × ϵi,t 0.20∗∗∗ 0.21∗∗ 0.15
(3.42) (2.27) (1.45)

MktNonFin − Rf × ϵi,t 0.094 0.045 -0.020 0.21∗∗ 0.15 0.13
(1.06) (0.42) (-0.15) (2.42) (1.55) (0.91)

SMB × ϵi,t 0.32∗∗ 0.32∗∗ 0.33∗∗

(2.47) (2.44) (2.59)

HML × ϵi,t -0.076 -0.10 -0.024
(-0.54) (-0.72) (-0.14)

CMA × ϵi,t -0.041 -0.031 -0.12
(-0.29) (-0.22) (-0.84)

RMW × ϵi,t 0.52∗∗∗ 0.53∗∗∗ 0.51∗∗∗

(4.15) (4.17) (4.03)

UMD × ϵi,t -0.036 -0.023 -0.017
(-0.58) (-0.36) (-0.27)

ϵi,t -0.032∗∗∗ -0.035∗∗∗ -0.037∗∗∗ -0.035∗∗∗ -0.036∗∗∗ -0.037∗∗∗ -0.042∗∗∗ -0.043∗∗∗ -0.043∗∗∗

(-4.35) (-4.61) (-4.62) (-4.41) (-4.56) (-4.60) (-4.53) (-4.70) (-4.72)

Stock Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Time Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Short + Liquidity Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations 207972 207972 207972 207972 207972 207972 207972 207972 207972
R2 0.25 0.25 0.25 0.25 0.25 0.25 0.26 0.26 0.26

This table shows estimates from panel regressions as in (13) of the main text:

Ri,t+1 −Rf,t = α0 + β1Ft+1 × ϵi,t + β2Wt+1 × ϵi,t + αt + αi + νi,t+1

Here, Ft+1 denotes shocks to intermediaries, and Wt+1 controls for other common shocks. The capital shocks refer to the
Federal Reserve primary dealer equity capital ratio shocks proposed in He et al. (2017), while the leverage shocks refer to
the broker-dealer leverage shocks from Adrian et al. (2014). Intermediary shocks refer to the average of the standardized
leverage and capital shocks. Financial sector return is the value-weighted return on the financial sector (stocks with SIC codes
between 6000 and 6999). Regressions control for a version of the value-weighted market risk factor that excludes financial
stocks. Controls SMB, HML, CMA, RMW, UMD refer to the Fama and French (2015) risk factors and the up-minus-down
momentum factor. The additional “Short + Liquidity Controls” include the average short interest in the stock as a fraction of
shares outstanding and the average of the log Amihud (2002) illiquidity index from t− 1 to t− 4, included individually and also
interacted with the set of risk factors in the regression. In parentheses are t-statistics clustered by time and firm to adjust for
cross-sectional and time-series correlation in the residuals. The intermediary shock measure is standardized, and returns are in
annualized percentage form.
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Table A.9: Panel regressions of rolling stock-level intermediary betas on intermediation
measure ϵi,t (with additional short interest and illiquidity controls)

Intermediary Shock Capital Shock Leverage Shock Ex Ret (Fin.)

ϵi,t 5.58∗∗∗ 0.12∗∗∗ 0.065∗∗∗ 0.18∗∗∗

(3.58) (3.39) (3.14) (3.36)

Stock Fixed Effects Yes Yes Yes Yes
Time Fixed Effects Yes Yes Yes Yes
Base Controls Yes Yes Yes Yes
Short + Liquidity Controls Yes Yes Yes Yes
Observations 130059 130059 130059 130059
R2 0.50 0.53 0.44 0.54

This table shows the results from regressions of rolling individual stock betas on the residual intermediation measure ϵi,t
(constructed to be uncorrelated with fundamental stock characteristics; section 4.1 discusses this in more detail). Stock betas
are obtained from regressions of the form

Ri,t −Rf,t = αi + βiFt + βM
i

(
MktNonFin

t − Rft
)
+ δi,t

within a window of plus or minus 15 quarters. I require a full window of observations for the estimated stock betas to be
included in the sample. I then estimate the reported coefficients using panel regressions taking the form

β̂i,t−15→t+15 = α0 + β1ϵi,t + β2Zi,t + αt + αi + νi,t

Controls Zi,t include gross profitability, investment (asset growth), CAPM beta, book to market, a second-degree polynomial
in log market cap and log book equity, and the average of the log Amihud (2002) illiquidity index from t− 1 to t− 4 plus stock
and time fixed effects. Additional “Short + Liquidity Controls” include the average short interest in the stock as a fraction of
shares outstanding and the average of the log Amihud (2002) illiquidity index from taken t − 1 to t − 4. In parentheses are
t-statistics double-clustered by stock and quarter. Returns and risk factors are expressed in annualized percentage terms, with
the exception of the intermediary shock, which is standardized to have zero mean and unit variance. Sample spans 1980q2 to
2017q3.
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Table A.10: High– minus low–residual intermediation ϵi,t spread portfolio returns on inter-
mediary shock and intermediary risk aversion index (alternative residualization by market
cap decile)

Contemporaneous Predictive
(1) (2) (3) (4)

Intermediary Shock 3.79∗∗∗ 3.91∗∗∗

(5.73) (3.62)

Intermediary Risk Aversion ηt 2.82∗∗∗ 2.92∗∗∗

(2.67) (3.18)

MktNonFin − Rf 0.000062 0.029
(0.00) (0.67)

Composite RP Zt -0.44
(-0.37)

Additional Risk Factor Controls No Yes
Observations 150 150 150 150
R2 0.12 0.23 0.065 0.066

This table shows the results from regressions of the excess returns from a high-minus-low-residual-intermediation portfolio
formed on the top and bottom quintiles of ϵi,t on the intermediary shock or intermediary risk aversion index. The additional
risk factor controls in column (2) include the Fama and French (2015) factors plus the up-minus-down momentum factor. In this
table, I obtain the residual intermediation ϵi,t by sorting stocks in the sample for equation (8) into start-of-period market cap
decile bins and then re-estimating (8) each quarter separately with decile bin–specific coefficients and market cap decile×year
fixed effects. Newey–West t-statistics with Newey and West (1994) optimal lags are in parentheses. Sample spans 1980q2 to
2017q3.
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B Model Extensions

B.1 Allowing for Correlation Between Intermediary and House-

hold Risk Tolerance

Consider the following extension on the model from section 2: Suppose that household risk

tolerance ρH is a function of both the state variable ζ, which does not move intermediary

risk tolerance, and ω, which does induce changes in intermediary risk tolerance. Then, for

local changes in ω and ζ,

dP =

[
ρ

′
I(ω)ρH(ζ, ω)− ρI(ω)ρH,ω(ζ, ω)

]
[∆ΦX +∆ϕ− ϵH ] +

[
ρ

′
I(ω) + ρH,ω(ζ, ω)

]
Σ1

Rf (ρI(ω) + ρH(ζ, ω))2
dω

+
ρI(ω)ρH,ζ(ζ, ω) [−∆ΦX −∆ϕ+ ϵH ] + ρH,ζ(ζ, ω)Σ1

Rf (ρI(ω) + ρH(ζ, ω))2
dζ

(16)

Proposition 3 follows easily from here. I focus on the first term in (16), which is the coefficient

on the intermediary risk tolerance shock dω. Since in proposition 3 I assume the partial

derivative ρHω(ζ, ω) > 0, then because ρ
′
I(ω) is multiplied by ϵH with negative sign and

ρHω(ζ, ω) is multiplied by ϵH with positive sign, the two effects work in opposite directions

for the coefficient on dω. Moreover, as the percentage intermediated is strictly decreasing

in ϵH , the negative sign on ρ
′
I(ω) causes the betas on shocks to ω to increase with residual

intermediation (ϵ̃ defined in equation (4)), while ρHω(ζ, ω) does the opposite. Therefore, if

the betas increase with residual intermediation (all else held constant), it must be because

the price is responding to changes in intermediary risk tolerance, not to correlated shocks

that move the risk tolerance of other agents.

It should be noted that this does not have to be the case if ρHω(ζ, ω) < 0; however, it

seems highly unlikely in practice that shocks to household and intermediary risk tolerance are

negatively correlated. Indeed, Haddad and Muir (2021) argue that, if anything, ρHω(ζ, ω) ≥
0, as episodes where intermediaries become more risk averse are also likely to be periods

of time when household risk aversion increases (the financial crisis of 2008–2009 being a

particularly salient example).

B.2 Model Version With Constant Relative Risk Aversion

In the main text, I assumed CARA preferences and allowed for wealth effects indirectly by

modeling wealth-dependent risk tolerance of intermediaries. I show below that the model

can be couched in terms of constant relative risk aversion (CRRA) utility with log-normal

payoffs, which explicitly includes equilibrium wealth effects, though closed-form expressions
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require some approximations. Let γI denote the coefficient of relative risk aversion and wI

the wealth of the intermediary.

Assume agents j believe asset payoffsD ∼ LogNormal(µj− 1
2
σ2,Σ), where σ2 is the vector

taken from the diagonal of Σ.30 I make the exact same assumptions about the structure of

µj and Σ as in the main text. Let P be a matrix with the vector of equilibrium prices on

the diagonal, p the vector of equilibrium log prices, and αj the vector of portfolio weights for

agents j. As Campbell and Viceira (2002) show, the solution to the portfolio choice problem

for the intermediary (and analogously for the household) can be approximated by

wIαI = PθI =
wI

γI
Σ−1(µI − p− rf1) (17)

where the approximation is exact as the length of the time interval goes to zero. Imposing

θI + θH = 1, the log market-clearing condition is:

p = log(wIαI + wHαH)

Approximate wIαI and wHαH around w0α0, where w0 = (wI + wH)/2 and α0 = 1/N is the

average portfolio weight. Let a = 2w0α0. Then,

p ≈ log (a1) +
wI

a
(αI − α01) +

wH

a
(αH − α01)

=
1

a

[
c̄+

wI

γI
Σ−1(µI − p− rf1) +

wH

γH
Σ−1(µH − p− rf1)

]
where c̄ = a(log (a1)− 1) is a constant vector. Then,

p =

(
aΣ + (

wI

γI
+
wH

γH
)I

)−1 [
Σc̄+

wI

γI
(µI − rf1) +

wH

γH
(µH − rf1)

]

Now define ρj ≡ wj

γj
. Applying the Woodbury matrix identity to

(
aΣ + (wI

γI
+ wH

γH
)I
)−1

and

using the fact that Σ can be expressed as ββ′ + λ2I, this gives

p =
ρI(µI − rf1) + ρH(µH − rf1) + ν

aλ2 + ρI + ρH
(18)

where ν = Σc̄ − kβ is a vector and k is a scalar that depends on the entire cross-sectional

distribution of stock characteristics.31 The similarity between the expressions for log price

30This is simply an adjustment so that the final equilibrium expressions are in terms of µj instead of

µj +
σ2

2 in this log-normal setting.
31The constant k can be expressed as 1

c (
1
a + 1

cβ
′β)−1β′ [Σc̄+ ρI(µI − rf1) + ρH(µH − rf1)], where c =
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(20) under CRRA preferences and price (3) under CARA preferences in the main text is

immediately evident: In both cases, ρI + ρH is in the denominator, and ρIµI + ρHµH is in

the numerator. Thus, a version of proposition 1 holds in the CRRA case.

To show this, I now allow ρI and ρH to depend on state variables ω and ζ, as before.

The CRRA case makes clear that this risk tolerance depends directly on the agents’ wealth

since ρj =
wj

γj
so that ω and ζ would include initial wealth. In principle, γj could also be

affected by changes in wj, such as to model nonlinear risk premia spikes in equity-constraint

intermediary asset pricing models; as discussed in section 2, γj may further be affected

by leverage constraints. In either case, the exact functional form for this dependence is

unimportant for the results below, and I capture it broadly by the dependence of ρI on ω.

The following is the CRRA analogy to proposition 1:

Proposition 4 Suppose ρ
′
I(ω) > 0. Then, under CRRA preferences, the component of the

total derivative of log price, dp, due to changes in ω (labeled by βω) is strictly decreasing in

ϵH .

Taking the total derivative of (20) immediately yields 4:

dp =
ρ′I(ω) [ρH(ζ)(∆ΦX +∆ϕ− ϵH)− ν + aλ2(µI − rf1)]

(ρI(ω) + ρH(ζ) + aλ2)2
dω

+
ρ′H(ζ) [ρI(ω)(−∆ΦX −∆ϕ+ ϵH)− ν + aλ2(µH − rf1)]

(ρI(ω) + ρH(ζ) + aλ2)2
dζ

≡ βωdω + βζdζ

(19)

As in the main text, I have used that µI = XΦI+ϕI , µH = XΦH+ϕH+ϵH , ∆Φ = ΦI−ΦH ,

∆ϕ = ϕI −ϕH and Σ = ββ′ +λ2I, with β = XΠ+ π. Since ρ
′
I(ω) > 0, the expression for βω

in (19) is strictly decreasing in ϵH and hence increasing in residual intermediation.

Again, note that (19) resembles a regression of the change in log price (“stock return”

for a CRRA investor) on shocks to ω and ζ, a response that grows smaller as households’

preference for holding the asset ϵH increases, in the exact same manner as in the CARA

version of the model in the main text.

This setting also delivers a version of proposition 2 for CRRA preferences. Define the

risk premium on asset k by E[rp,k] = µk − p− rf , and suppose for two assets that X1 = X2

so that the asset characteristics are the same but that ϵH,1 < ϵH,2. Then,

E[rp,1 − rp,2] =
ρH(ζ)(ϵH,2 − ϵH,1))

aλ2 + ρI(ω) + ρH(ζ)

aλ2 + ρI + ρH .
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which is strictly decreasing in ω. This leads to the CRRA version of proposition 2:

Proposition 5 Consider assets 1 and 2 such that X1 = X2 while ϵH,2 > ϵH,1. Let E[rp,k] =

µk − p − rf denote the risk premium on asset k. Then, the difference in the risk premium

on asset 1 and asset 2 decreases with ω, i.e., ∂E[rp,1 − rp,2]/∂ω < 0.

Finally, I use a Taylor approximation to obtain a linear relationship between percentage

intermediated, characteristics, and (a monotonic transformation of) ϵH—the CRRA analogy

to equation (4) in the main text.

The linearization constant a = 2w0α0 used above is the price that would obtain if both

agents held the same wealth and set portfolio weights to 1/N . Applying the same lineariza-

tion to the intermediary’s optimal portfolio (17) implies

αIwI = PθI =
wI

γI
Σ−1(µI − p1− rf1) ≈ (a(1− log(a))I + p)θI

where, in an abuse of notation, I now denote by p the matrix with log prices on the diagonal

and 0 elsewhere. Then,

θI ≈ ((a(1− log(a))I + p)−1 wI

γI
Σ−1(µI − p1− rf1)

Let θI,k denote the intermediary holdings of asset k. I show that θI,k can be expressed as

the ratio of two affine equations in Xk, where Xk is the vector of characteristics of asset k.

I first demonstrate that the log price vector p1 is affine in X:

p1 =
ρI(µI − rf1) + ρH(µH − rf1) + ν

aλ2 + ρI + ρH
(20)

where ν = Σc̄−kβ. Note that Σc̄ = (ββ′+λ2I)c̄ = β′c̄(ΠX+π)+λ2c̄ is affine in X since

β′c̄ is a scalar and, similarly, kβ = k(XΠ + π) is affine in X. Then, since µI = XΦI + ϕI

and µH = XΦI + ϕH + ϵH , p is affine in X and is of the form p1 = b + XΓ + dϵH , where

d > 0 so that prices are increasing in ϵH . The derivation of equation (4) in the main text

establishes that Σ−1(µI − p1− rf1) is also of the form b̂+XΓ̂− d̂ϵH , where d̂ > 0 and hence

is decreasing in ϵH .

For the kth asset, we then have that θI,k can be expressed as

θI,k =
b̂+ Γ̂′Xk − d̂ϵH,k

b+ Γ′Xk + dϵH,k

(21)

Note that (21) is strictly decreasing in ϵH , but in a nonlinear fashion. Without loss of

generality, assume characteristicsX and ϵH are mean 0, and approximate (21) aroundX0 = 0
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and ϵ0 = 0. The first-order Taylor approximation is

θI,k ≈
b̂

b
+

(
bΓ̂′ − b̂Γ′

b2

)
Xj −

(
d̂b+ db̂

b2

)
ϵH,j

≡ a+B′Xk + ϵ̃k

(22)

The local approximation (22) is centered on a constant price (i.e., market cap) at the aver-

age portfolio weight and the average characteristic. In practice, this means the approximate

relationship should be more accurate when I compare stocks of a similar market capitaliza-

tion. To see whether this matters, I sort stocks within my baseline sample into market-cap

decile bins every quarter. I then reestimate (8) separately by market cap decile×calendar

quarter to back out an alternative estimate of the residual intermediation ϵi,t. The new

size decile–specific high-minus-low-intermediation spread portfolio has a correlation of 0.93

with the baseline spread portfolio. In Appendix Table A.10, I sort stocks on this alternative

measure of ϵi,t; the findings are nearly identical quantitatively to those under the baseline

for both the contemporaneous and predictive regressions.

B.3 Model Version Under Mean–Variance Preferences in Returns

The model can alternatively generate explicit wealth effects in closed form without relying

on approximations if I assume that agents have mean–variance preferences in the return on

initial wealth instead of the final period level of wealth.

Let P be a matrix with the vector of prices on the diagonal. Let Σ̃ = P−1ΣP−1 be the

variance–covariance matrix of equilibrium gross returns, where Σ is the variance–covariance

matrix of asset payoffs. Under mean–variance preferences over expected returns, the solution

to the intermediary’s problem (in terms of portfolio shares) is

αI =
1

γI
Σ̃−1(EI [r]−Rf1)

or, in terms of dollar holdings,

PθI =
wI

γI
PΣ−1P (P−1µI −Rf1)

=⇒ θI =
wI

γI
Σ−1(µI −RfP1)

Everything then proceeds as before by defining ρI = wI

γI
. This setting is therefore iso-

morphic to my assuming CARA preferences and modeling wealth-dependent risk tolerance

ρI =
wI

γI
, as in Koijen et al. (2023).
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C Data Appendix

C.1 Construction of AEM Leverage Factor

As noted by Cho (2020), changes to the Federal Reserve flow-of-funds data have significantly

altered the implied broker-dealer leverage ratio. From the first quarter of 2014, repo assets

(reverse repo) are included in assets, and only repo liabilities, rather than net repo, are in-

cluded in the liabilities section. To make my leverage factor consistent with the construction

in the original Adrian et al. (2014) paper, I obtain the broker-dealer leverage from Table

L128 of the 2013q4 flow-of-funds release. I then compute the leverage as

Leveraget =
Total Financial Assetst

Total Financial Assetst − Total Financial Liabilitiest
(23)

I then seasonally adjust as described in Adrian et al. (2014). Cho (2020) suggests that

the following change allows one to extend the original AEM factor:

Leveraget =
Total Financial Assetst − Repo Assetst

Total Financial Assetst − Total Financial Liabilitiest − FDI in USt

(24)

This accounts for changes to foreign direct investment reflected in liabilities in later

releases of the flow of funds. However, I find that when I use the above for the most recent

releases, the values I obtain under the two methods (23) and (24) coincide for quarters

until the end of 2010, at which point broker-dealer leverage begins on an upward spike for

(24) relative to (23); this spike becomes so extreme that leverage becomes negative toward

the end of the sample. Because of this issue, I simply follow Adrian et al. (2014) and use

(23) through the 2013q4 release, and then I extend the series using (24) with updated flow-

of-funds data, which is also consistent with the extended leverage factor data posted on

Tyler Muir’s website. I further seasonally adjust the leverage growth series using expanding

window regressions of leverage growth on quarterly dummies as in AEM to arrive at my final

leverage factor.

C.2 Selection of WRDS Ratios for Final Sample

For my robustness checks in section 4.5, I obtain the 73 financial ratios from the WRDS

financial ratios suite. I find that data availability is sparse, so I do the following:

1. When firm dividend yield and dividend–price ratios are missing, I assume they are

equal to zero.

2. I replace missing values for any variables with their lags as of up to 8 quarters prior.
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3. I then check the fraction of missing observations for stocks that overlap with my main

sample. If this fraction is greater than 1%, I exclude the ratio from the analysis.

This leaves the following ratios:

Enterprise value multiple, price to sales, price to cash flow, dividend payout ratio, net profit

margin, operating profit margin before depreciation, operating profit margin after depreci-

ation, gross profit margin, pre-tax profit margin, cash flow margin, return on assets, return

on equity, return on capital employed, after-tax return on average common equity, after-tax

return on invested capital, after-tax return on total stockholders equity, gross profit to total

assets, common equity to invested capital, long-term debt to invested capital, total debt to

invested capital, capitalization ratio, cash balance to total liabilities, total debt to total as-

sets, total debt to EBITDA, long-term debt to total liabilities, cash flow to total debt, total

liabilities to total tangible assets, long-term debt to book equity, total debt to total assets,

total debt to capital, total debt to equity, asset turnover, sales to invested capital, sales to

stockholders equity, research and development to sales, advertising expenses to sales, labor

expenses to sales, accruals to average assets, price to book, and dividend yield.

Though the WRDS book-to-market ratio satisfies my sampling criteria, I also exclude

this variable because I already include a version of book to market in the regression. Finally,

I winsorize these variables cross-sectionally at the 1% level to deal with outliers.

C.3 FactSet Data

For the estimates in section 5 of the main text, I obtain institutional holdings data from the

FactSet Ownership database. In particular, I obtain the equity positions of 13F institutions

from the FactSet Fund and Institutional Holdings – Equity database. These data are based

on institutional 13F filings, similarly to the Thomson Reuters data used in my main sample.

On the other hand, the FactSet data classify the institution types in a more granular way

than the classification available based on the Thomson Reuters data. I also use these data

to identify hedge funds. I follow the classification scheme outlined in Koijen et al. (2023)

as closely as possible. In particular, I follow Koijen et al. (2023) in grouping all non–

hedge fund investment advisors and mutual funds into one group that includes the FactSet

entity subtypes “IA” (investment advisor), “IC” (investment company), “RE” (research

firm), “PP” (real estate manager), “SB” (subsidiary branch), and “MF” (mutual fund).

FactSet occasionally assigns a rollup entity ID for 13F-filing institutions that can be rolled

into a broader institution. Because entity types are assigned at this rollup institution level,

which is sometimes broader than the level of aggregation of the 13F filer FactSet entities, I use

the entity subtype of the rollup entity to identify the institution types for each security-level
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holding position.

In addition to security-level detail for equities, FactSet provides generic asset class–level

holdings for individual funds and a mapping from the FactSet fund identifiers to the 13F

institution that runs each fund. This includes the size of positions in corporate bond and

treasury markets. I link the information from these fund-level aggregated positions back to

the 13F institutions running the funds to divide investment advisors and mutual funds into

different groups. The first group is any 13F institutions that own funds that currently report

positions in bond markets.32 This classification is motivated by evidence that bond markets

are heavily intermediated by dealer banks (Haddad and Muir, 2021; He et al., 2022; Li and

Xu, 2024). I group the remaining mutual funds and investment advisors into their own

category. If an investment advisor or mutual fund cannot be mapped to its individual funds’

positions, then I automatically put it in the non-bond-exposed category. While FactSet

positions are available back to the first quarter of 1999, the generic holdings data are poorly

populated in 1999. Consequently, I start my FactSet-based analysis in the first quarter of

2000, similarly to Koijen et al. (2023).

I use the ratio of FactSet institutional adjusted share holdings divided by FactSet reported

shares outstanding to obtain the share of each stock that is held by a given 13F entity, and

then I aggregate by institution type. I then reestimate the residual intermediation in equation

(8) separately considering only the holdings for the given set of institutions. I also winsorize

the holdings for each institution type at the 1% level each quarter. I then group stocks

into portfolios sorted on measures of residual intermediation for the different subgroups, as

described in section 5.1 of the main text.

C.4 Mutual Fund Flows

I use the CRSP survivorship bias free mutual fund database to construct quarterly returns

and fund flows for US equity mutual funds. I use the MFLINKS dataset available on WRDS

to group the CRSP share classes at the fund level, following Wermers (2000). As in Lou

(2012), the fund flow for mutual fund k at time t is given by

Flowk,t =
TNAk,t − TNAk,t−1(1 + Rk,t)

TNAk,t−1

(25)

where Rk,t is the fund return over quarter t and TNAk,t is the end-of-quarter total net assets

of fund k. Again following Lou (2012), I compute flow-induced trading pressure for stock i

32Because the generic positions are commonly reported biannually instead of quarterly, I consider a
position current if the institution reports bond market exposure in the current quarter or the prior quarter
if the current quarter is not available.
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in quarter t as

FITi,t =

∑
k SharesHeldi,k,t−1Flowk,t∑

k SharesHeldi,f,t−1

(26)

Where SharesHeldi,k,t−1 is the number of shares held by fund k of stock i at the end of

quarter t− 1. I obtain this data from the Thomson Reuters S12 file. Following Li (2022), I

then compute portfolio-level flow-induced trading for portfolio p at time t as

FITp
t =

1

Np,t

∑
i∈Pt

FITi,t (27)

where Np,t gives the number of stocks in portfolio p at the start of period t and Pt is the set

of stocks in portfolio p at the start of the period. I verify that FITp
t explains variation in

returns on my portfolios by estimating

Rp
t+1 −Rf,t = α + β1FIT

p
t+1 + β2FIT

p
t + β3FIT

p
t + νpt+1

For brevity I report results for p = Q5, Q1, the top- and bottom-quintile portfolios sorted

on residual intermediation ϵi,t, respectively. Results are below:

Dependent Variable: Excess Returns for

Q1 Q5

FITQ1
t+1 1.89∗∗∗

(3.03)

FITQ5
t+1 2.10∗∗∗

(2.78)

FITQ1
t -1.21∗∗

(-1.98)

FITQ5
t -1.48∗∗

(-2.07)

Observations 149 149

R2 0.28 0.25

Consistent with Lou (2012); Li (2022), flow-induced trading generates contemporaneous

upward price pressure, so that FIT p
t+1 has a positive and highly-significant coefficient, while

previous flow-induced trading is associated with reversals, so that FIT p
t and FIT p

t−1 have

negative coefficients. Finally, relative flow-induced trading for the high- minus low-residual
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intermediation portfolio is given by

Relative FITt+1 = FITQ5
t+1 − FITQ1

t+1 (28)

where Q5 and Q1 denote the top- and bottom-quintile portfolios sorted on residual interme-

diation ϵi,t, respectively.
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