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Abstract
We construct new technology indicators using textual analysis of patent documents and occupation
task descriptions that span almost two centuries (1850–2010). At the industry level, improvements
in technology are associated with higher labor productivity but a decline in the labor share.
Exploiting variation in the extent certain technologies are related to specific occupations, we show
that technological innovation has been largely associated with worse labor market outcomes—
wages and employment—for incumbent workers in related occupations using a combination of
public-use and confidential administrative data. Panel data on individual worker earnings reveal
that less educated, older, and more highly-paid workers experience significantly greater declines
in average earnings and earnings risk following related technological advances. We reconcile
these facts with the standard view of technology-skill complementarity using a model that allows
for skill displacement.
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Economists and workers alike have long worried about the employment prospects of occupations
whose key tasks can be easily performed by a machine, robot, software, or some other form of capital
that substitutes for labor.1 These concerns have been exacerbated by recent breakthroughs in
automation technologies (e.g., software, artificial intelligence, robotics) which have expanded the set of
manual and cognitive tasks which can performed by machines and have occurred contemporaneously
with an increase in income inequality and a fall in the labor share of aggregate output.2 Yet, despite
the importance of these issues, systematic evidence for technological displacement remains elusive.3

Our goal is to fill this gap: we leverage over a century and a half of data to propose and validate
new metrics of workers’ exposure to technological innovation and relate them to workers’ labor
market outcomes, both at the aggregate as well as the individual level.

To quantify workers’ exposures to technical change we measure the similarity between the textual
description of the tasks performed by an occupation and that of major technological breakthroughs.
We identify the latter through the textual analysis of patent networks using the methodology of Kelly,
Papanikolaou, Seru, and Taddy (2020). To estimate the distance between a breakthrough innovation
and workers’ task descriptions, we leverage recent advances in natural language processing that
allow us to compute a measure of the similarity between documents that accounts for synonyms.
By exploiting the timing of patent grants we can identify the extent to which certain worker groups
(occupations) are exposed to major technological breakthroughs at a given point in time.

In sum, our indices capture the extent to which specific occupations are exposed to breakthrough
innovations in a given year. We emphasize that, a priori, we are agnostic on whether innovations
that are similar to tasks certain occupations perform are likely to be substitutes or complements. For
that, we need to examine how our indicators correlate with labor market outcomes. A key advantage
of our methodology is that it relies only on document text; as such, we are able to construct
time-series indices of occupation exposures that span the last two centuries. For example, our
technology exposure for “molders, shapers, and casters, except metal and plastic”—an occupation
category which includes glass blowers as a sub-occupation—takes a relatively high value in the

1Fear of technological unemployment is not new. In 350 BCE, Aristotle wrote: “[If] the shuttle would weave and
the plectrum touch the lyre without a hand to guide them, chief workmen would not want servants, nor masters slaves.”
In 1811, skilled weavers and textile workers (known as Luddites) worried that mechanizing manufacturing (and the
unskilled laborers operating the new looms) would rob them of their means of income. In 1930, Keynes described
this type of potential labor market risk when he said, “We are being afflicted with a new disease of technological
unemployment...due to our discovery of means of economising the use of labor outrunning the pace at which we can
find new uses for labor." More recently, a McKinsey report estimated that between 400 million and 800 million jobs
could be lost worldwide due to robotic automation by the year 2030.

2For instance, one of the leading explanations for the increase in the skill premium is skill-biased technical change,
whereas the decline in the labor share has been attributed to capital-embodied technical change. See Goldin and Katz
(2008); Krusell, Ohanian, Ríos-Rull, and Violante (2000); Karabarbounis and Neiman (2013); Acemoglu and Restrepo
(2020, 2018, 2021)

3Due to the difficulty of constructing broad measures of labor-displacive innovations, existing work has focused on
analyzing specific instances in which the impact of a specific technology on workers can be identified (Atack, Margo,
and Rhode, 2019; Feigenbaum and Gross, 2020; Akerman, Gaarder, and Mogstad, 2015; Humlum, 2019).
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early 1900s because of similarity with patents such as US patent number 814,612, entitled “Method
of Making glass sheets.” This patent relates to a technology for making glass called the cylinder
machine, which allowed glass manufacturers to replace the labor of skilled hand glass blowers in
favor of a highly mechanized and capital-intensive production process.4

Examining our technology exposure measure, we find that, prior to 1980, innovation was
consistently associated with manual physical tasks; by contrast, the innovations of the late 20th/early
21st century have become relatively more related to cognitive tasks. This pattern is partly driven
by the increased prevalence of breakthrough patents related to computers and electronics. Last,
occupations that are associated with interpersonal tasks have consistently low exposures to innovation
throughout the entire sample period.

Our analysis of technical change and labor market outcomes delivers several new findings. First,
we find that workers most exposed to technological breakthroughs have experienced consistently
negative labor market outcomes. Indeed, a higher rate of innovation in a given industry is associated
with a decline in the labor share of output even as labor productivity rises. Comparing workers
across occupations differentially exposed to technology improvements, we find that an acceleration
of technical change is associated with declines in employment and wage earnings for affected workers.
The negative correlation between employment and our technology exposure measure is largely
consistent over time—starting from the Second Industrial Revolution of the late 19th century to the
present. We find some evidence that the negative relation between our measure and employment is
stronger in recessions—consistent with the literature on job polarization (Jaimovich and Siu, 2018).
These negative relations are estimated using a combination of public-use Census micro-data, which
are available over longer horizons, and confidential administrative data from the Census which
include individual tax records starting in the early 1990s.5

Second, we exploit the richness of administrative data to examine how these relations vary with
observable characteristics, by studying a unique panel of administrative earnings records from the US

4Jerome (1934) documents a dramatic transformation in the production process of the glass making industry as a
result of the cylinder machine: “By 1905 many hand plants had gone out of business, wages of blowers and gatherers
were reduced 40 per cent, and the new machine may be said to have achieved commercial success . . . in the quarter
century following the introduction of machine blowing, the window-glass industry, one of the last strongholds of
specialized handicraft skill, has undergone a technological revolution resulting in the almost complete disappearance
of the hand branch of the industry and the elimination of two skilled trades and one semiskilled, and also the partial
elimination of the skilled flatteners.”

5Such a negative relation is not obvious ex-ante, since our approach could in principle identify both labor-saving
as well as labor-enhancing technologies. If we are primarily interested in identifying labor-saving technologies, it
is possible that our measure is diluted by mixing labor-saving and productivity-enhancing innovations. To address
this possibility, we exploit recent advances in topic modeling to construct a composite predictor from patent text
whose purpose is to maximize the in-sample predictability of employment declines–i.e., to identify language consistent
with labor saving innovations. After conducting this analysis, we find that our baseline innovation measures have
a correlation of approximately 75% with this statistical factor. Comparing the performance of our measure to this
benchmark, we found that both approaches lead to quantitatively similar negative outcomes in terms of both earnings
and employment. On this basis, we conclude that our methodology primarily identifies labor-displacing innovations.
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Social Security Administration which are linked with information on occupation and education from
the Current Population Survey. Thus, relative to the literature which has mostly studied repeated
cross-sections, we are able to measure a worker’s occupation prior to the development of related
technologies, then estimate how her earnings evolve in future years even if she switches employers,
industries, and/or occupations. This analysis allows us to study the link between innovation and
subsequent worker-level earnings growth rates and to address a number of potential concerns about
composition effects driving our results. Our empirical analysis leverages the granularity of our
patent-occupation measures to exploit variation at the industry-occupation level, i.e., in relative
differences in the rate at which firms in different industries develop new technologies which are
similar to a given occupation at the same point in time.

Across specifications, we find that the labor earnings of older or less educated workers are
significantly more responsive to technological innovation than the average worker. More importantly,
however, we find that the highest paid workers are also relatively more exposed. Specifically, workers
at the top end of the earnings distribution—relative to their peers in the same occupation and in the
same industry—also experience significantly larger declines than the average workers. Specifically,
a one-standard deviation increase in our exposure measure is associated with a 2.5% decline in
subsequent earnings compared to a 1.3% decline for the average worker. Our results are unchanged
if we further control for common shocks to labor demand at the industry and occupation levels via
industry-time and occupation-time fixed effects, respectively.

The fact that earnings of highly paid workers respond more to our technology exposure measure
appears at first to be at odds with the canonical model of capital-skill complementarity. Indeed, a
common proxy for worker skill is past income, so the fact that more highly paid workers experience
larger declines seems surprising. We argue that it is not: though (a subset of) skilled workers as
a group may benefit, if technological innovation is associated with skill displacement individual
workers whose prior skills become obsolete may be left behind. Thus, higher paid (skilled) workers
have more to lose. Consistent with this view, we find that, for the highest-paid workers (top 5% in
past earnings relative to their peers in the same occupation and industry), a one-standard deviation
increase in technology exposure is associated with a 1.26 percentage point increase in the probability
of falling to the bottom decile of wage growth—compared to a 0.41% percentage point increase for
the average worker.

To formalize this intuition, we introduce skill displacement in the canonical model of capital-skill
complementarity (see, e.g. Krusell et al., 2000). We allow individual workers to supply both skilled
and unskilled labor services; the quantity of skilled labor a given worker can supply depends on
her skill. Improvements in technology are associated with increased likelihood of skill loss. Thus,
even though skilled workers as a group (specifically, those that retain their skill) experience higher
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wage earnings following improvements in technology, unlucky individual workers can be left behind.
On average, top workers may experience lower earnings growth following periods of technological
advances if the increase in the likelihood of displacement is sufficiently high.

The calibrated model quantitatively replicates our new facts. In the model, increases in
technological innovation lead to an increase in labor productivity and the skill premium—yet the
labor share of output falls. On average, exposed workers in the model experience declines in wage
earnings relative to peers whose skills are not related to the new technologies, and these differences
are the largest for the highest paid workers. Importantly, these patterns emerge even though
technology is more complementary to skilled that unskilled labor services. Following an innovation,
high income workers whose skills are not displaced benefit from two forces: 1) complementarities
with the more productive technology and 2) the fact that displacement of other high skilled workers’
skills makes their expertise even more scarce and thus more valuable. Our model replicates our
empirical result that workers with lower earnings also are hurt by the emergence of new technologies;
specifically, this result obtains not because specific skills are displaced, but rather because of an
increase in the supply of workers performing unskilled tasks which lowers wages.

With the model in hand, we also conduct some simple comparative statics exercises to consider
the potential implications of an acceleration of the rate of innovation in the economy, consistent
with the observed increase in the arrival rate of breakthrough patents which began in 1980. We
consider two potential experiments. In the first case, we increase the arrival rate of new technologies
but hold fixed the rate at which workers accumulate human capital. In the latter case, we also
increase the rate at which workers acquire new skills so that the overall number of efficiency units
of skilled human capital stays constant. In both model scenarios, such a shift generates increases in
output, declines in the labor share, and increases in the skill premium in both the short and long
run, all of which are consistent with trends in recent data from the US. In the former case, income
inequality increases over the medium term but declines over the longer run because the higher rate
of skill displacement eventually compresses the skill distribution by enough to offset the impact
of a higher skill premium. In the latter case, this equalizing force is neutralized and thus income
inequality increases in both the short and long run.

In sum, we provide and validate a new measure of workers’ exposure to technological change
that is based on the similarity between patent documents and worker job descriptions. Overall, we
document a robustly negative relation between out technology exposure measure and subsequent
labor market outcomes, results which are consistent with a model with capital-skill complementarity
and skill displacement.

Our work contributes to the voluminous literature seeking to understand the determinants of
rising inequality and the fall in the labor share. Existing work emphasizes the complementarity
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between technology and certain types of worker skills (Goldin and Katz, 1998, 2008; Autor, Levy,
and Murnane, 2003; Autor, Katz, and Kearney, 2006; Goos and Manning, 2007; Autor and Dorn,
2013); or the substitution between workers and capital (Krusell et al., 2000; Hornstein, Krusell, and
Violante, 2005, 2007; Karabarbounis and Neiman, 2013; Acemoglu and Restrepo, 2020; Hemous and
Olsen, 2021). Many models in this literature treat a worker skill as a fixed characteristic and study
how demand for technologies affects differences in wages between groups with different ex ante skill
levels. Our contribution is to provide a direct measure of technology exposure of specific workers
and examine the extent to which advances in technology are associated with differences in their
labor market outcomes. Motivated by our empirical evidence, our model allows for the possibility
that gains from new technologies can displace the demand for specific expertise of workers skilled at
tasks associated with older vintages, similar to a literature on vintage specificity of human capital
(Chari and Hopenhayn, 1991; Violante, 2002; Deming and Noray, 2020) and models which seek to
explain earnings losses from job displacement via obsolescence/loss of specific human capital (Neal,
1995; Kambourov and Manovskii, 2009; Huckfeldt, 2021; Braxton and Taska, 2020).

We are not the first to analyze the differential exposure of certain occupations to technical
change. Autor and Dorn (2013); Acemoglu and Autor (2011); Autor et al. (2003) document the
secular decline in occupations specializing in routine tasks, starting in the late 20th century. The
key idea is that routine tasks can be easily codified into a sequence of instructions. Hence, such
tasks are relatively more prone to labor-saving technological change than other more complex tasks.
Despite the success that this literature has had in explaining which occupations have been exposed
to technologies, and what have been the effects, it is still an open question how this exposure changes
over time, which technologies relate to which types of tasks and which occupations, and whether
or not technological unemployment is a robust phenomenon in other time periods. More recently,
Webb (2019) also analyzes the similarity between patents and occupation task descriptions. Our
work differs in both scope and aim. Webb (2019) focuses on automation and the future of work,
and thus restricts attention to patents identified as being related to robots, AI, or software. As
a result, the analysis in Webb (2019) is largely cross-sectional in nature as he focuses on a single
technological episode—the rise of AI and robots. In contrast, we construct time-series indicators to
understand the relation between innovation and employment over different technological episodes
and its impact on workers with different characteristics. Further, focusing on the more recent period
for which wage earnings data is available (after 1980), we show that the predictability of our measure
for worker earnings is complementary to the information contained in the routine-task intensity
measure of Autor and Dorn (2013), the AI and robotics occupation exposure measure of Webb
(2019) and is not driven by industry-specific trends.6

6In related work, Mann and Püttmann (2018) and Dechezleprêtre, Hémous, Olsen, and Zanella (2021) use patent
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A significant contribution of our work lies in its scope: we provide a measure of occupational
exposure to technical change that spans the period from 1850 to 2010. An important advantage of
our analysis is that it allows us to draw broad conclusions regarding the relation between technical
change and worker outcomes over a long time period. Further, by constructing measures at the
patent-occupation level, our approach allows us to study technological change at a highly granular
level. Patents also have the advantage of being associated with specific timing (filing and approval
dates) and are linkable to specific firms. To this end, our empirical analysis uses this granular
information to compute measures of technological change at the industry-occupation level. Our
results thus complement some earlier studies which, by narrowing their scope, are able to analyze
the impact of worker earnings associated with specific technologies. For example, Atack et al. (2019)
analyze how workers’ task transitioned from hand to machine production in the late 19th century.
Recently, Feigenbaum and Gross (2020) show that incumbent telephone operators were more likely
to be in lower-paying occupations following the adoption of mechanical switching technology by
AT&T. Akerman et al. (2015) and Humlum (2019) provides an in depth analyses of impacts of
adoption of broadband internet and industrial robots, respectively, leveraging microdata on affected
workers and firms.

Though labor income risk is not the primary focus of our study, we reach a similar conclusion
as Kogan, Papanikolaou, Schmidt, and Song (2020): higher-paid workers face considerably greater
risk in their labor income as a result of technological innovation. Though some of the conclusions
are similar, these two papers ask different questions. Kogan et al. (2020) examine the dynamics of
wage earnings in response to innovation by the workers’ own firm or its competitors in the product
market. Kogan et al. (2020) are interested in the extent to which profit-sharing motives transfer the
risk of creative destruction from the firm owners to its workers. By contrast, we examine outcomes
for all workers in the same industry, differentiated by their occupation (and its exposure to major
innovations). Since our goal is to capture not only innovation by a firm but also the overall adoption
of a technology in a given sector, the exact origin of these innovations are not particularly relevant.

1 Motivation: Technology, Productivity, and the Labor Share

We begin with a set of facts regarding the joint dynamics of aggregate measures of innovation,
measured productivity, and the labor share that serve to motivate the remainder of our analysis.
To do so, we obtain data on industry-level measures of output (value added), employment and the
labor share from the NBER manufacturing database—which cover the 1958 to 2018 period.

text with different classification algorithms to identify automation patents in more recent periods, though they do not
relate these patents with specific occupations performing related tasks.
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Measuring the degree of technological innovation that takes place in a particular industry at
a particular point in time is considerably more challenging. We do so by relying on patent data
and closely follow the methodology of Kelly et al. (2020). In particular, Kelly et al. (2020) identify
breakthrough innovations as those that are both novel (whose descriptions are distinct from their
predecessors) and impactful (they are similar to subsequent innovations). They measure a patent’s
novelty as its dissimilarity with the existing patent stock at the time it was filed. In particular, they
construct a measure of ‘backward similarity’

BSτbj =
∑

i∈Bj,τb

ρj,i, (1)

where ρi,j is the pairwise cosine similarity (using TF-IDF weights) of patents i and j and Bj,τb
denotes the set of “prior” patents filed in the τb calendar years prior to j’s filing. Patents with
low backward similarity deviate from the state of the art and are therefore novel. Similarly, they
measure a patent’s impact by its ‘forward similarity’ as

FS
τf
j =

∑
i∈Fj,τf

ρj,i, (2)

where Fj,τf denotes the set of patents filed over the next τf calendar years following patent j’s filing.
The forward similarity measure in (2) estimates of the strength of association between the patent
and future technological innovation over the next τ years.

The Kelly et al. (2020) patent-level measure combines forward and backward similarity to
identify patents that are both novel and impactful,

qτj = logFSτfj − logBSτbj . (3)

To create a time-series index, Kelly et al. (2020) remove calendar year fixed effects from (3) in order
to adjust for shifts in language over time. After defining a ‘breakthrough’ patent as one that falls
in the top 10% of the unconditional distribution of importance, they then construct a time series
index as the number of breakthrough inventions granted in each year.

In brief, their measure of innovation in industry j in year t is defined as

ψj,t = 1
κt

∑
p∈Γt

αj,p. (4)

To construct (4), we need to determine the set of breakthrough patents that are relevant to a given
industry. We first identify the set Γt of ‘breakthrough’ patents as those that fall in the top 10%
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of the unconditional distribution of patent importance (based on their ratio of 10-year forward to
5-year backward similarity). We map patents to industries based on their CPC technology class
using the probabilistic mapping constructed by Goldschlag, Lybbert, and Zolas (2020). Here, αj,p
denotes the probability of breakthrough patent p being assigned to industry j. Last, we scale (4) by
US population κt and normalize to unit standard deviation.

We then estimate the following specification

logXj,t+k − logXj,t = α(k) + β(k)ψj,t + δ(k)Zj,t + εj,t, k = 1 . . . T years. (5)

We focus on four outcome variables: output (value-added); employment; labor productivity (value-
added per worker); and the labor share. We examine horizons of up to T = 6 years. Controls
include the lagged 5-year growth rate of the outcome variable and year fixed effects.

Figure 6 plots the estimated impulse response coefficients β(k). Panel A illustrates that an
one-standard-deviation increase in the degree of innovation ψj,t in a given industry is associated
with an approximately 2% increase in output over the next six years. However, this increase in
output primarily reflects an increase in productivity: as we see from Panels B, the overall level
of employment in the industry weakly falls. As a result, we see in Panel C that, in response
to a one-standard-deviation increase in ψj,t, labor productivity in the industry rises sharply—by
approximately 3% over the next six years. Panel D illustrates that the labor share of output in the
industry falls.

In brief, an increase in our technology measure is associated with higher measured labor
productivity and a decline in the labor share. This pattern strongly suggests that, on average, our
technology measure ψj,t captures innovations that likely act as substitutes, rather than complements
to labor. That is, even though improvements in technology are associated with an increase in the
measured productivity of labor, they are associated with declines in the labor share. The remainder
of the paper builds on this idea and aims to provide further refinement to our technology measure
by identifying which set of innovations are more likely to substitute for labor inputs. In the process
of doing so, we also broaden the coverage from just manufacturing to all sectors in the economy.

2 Measuring Workers’ Technology Exposure

Here, we construct a measure of technological innovation occurring at a particular point in time
that is relevant for a particular set of worker tasks (occupation). Our interpretation is that this
measure can be used to proxy for a worker’s exposure to technological innovation. To do so, we
add an additional source of cross-sectional variation to the Kelly et al. (2020) time-series measure
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of innovation discussed above. Specifically, we recognize that breakthrough innovations at a given
point in time may be differentially related to particular occupations. To construct our measure,
we rely on measuring the ‘distance’ between the description of the technology (from the patent
document) to the description of the tasks that a given occupation performs (from the Dictionary of
Occupational Titles, DOT). The remainder of this section describes our methodology.

2.1 Data and Methodology

We identify technologies that are relevant to specific worker groups as those that are similar to
the descriptions of the tasks performed by a given occupation. We do so by analyzing the textual
similarity between the description of the innovation in the patent document and the worker’s job
description.

We obtain text data for measuring patent/job task similarity from two sources. Job task
descriptions come from the revised 4th edition of the Dictionary of Occupation Titles (DOT)
database. We use the patent text data parsed from the USPTO patent search website in Kelly
et al. (2020), which includes all US patents beginning in 1976, comprising patent numbers 3,930,271
through 9,113,586, as well as patent text data obtained from Google patents for pre-1976 patents.
Our analysis of the patent text combines the claims, abstract, and description section into one
patent-level corpus for each patent. Since the DOT has a very wide range of occupations (with over
13,000 specific occupation descriptions) we first crosswalk the DOT occupations to the considerably
coarser and yet still detailed set of 6-digit occupations in the 2010 edition of O*NET. We then
combine all tasks for a given occupation at the 2010 O*NET 6-digit level into one occupation-level
corpus. See Appendix A for further details on cleaning and preparing the text files for numerical
representation.

To identify the similarity between a breakthrough innovation and an occupation, we need to
identify meaningful connections between two sets of documents that account for differences in the
language used. The most common approach for computing document similarity is to create a matrix
representation of each document, with columns representing document counts for each term (or
some weighting of term counts) in the dictionary of all terms contained in the set of documents,
and with rows representing each document. Similarity scores could then be computed simply as the
cosine similarity between each vector of weighted or unweighted term counts:

ρi,j = Vi
||Vi||

· Vj
||Vj ||

(6)

Here Vi and Vj denote the vector of potentially weighted terms counts for documents i and j.
This approach is often referred to as the ‘the bag-of-words’ approach, and has been used
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successfully in many settings. For example, Kelly et al. (2020) use a variant of this approach to
construct measures of patent novelty and impact based on pairwise distance measures between
patent documents. Since patent documents have a structure and a legalistic vocabulary that is
reasonably uniform, this approach works quite well for patent-by-patent comparisons. However, this
approach is less suited for comparing patent documents to occupation task descriptions. These two
sets of documents come from different sources and often use different vocabulary. If we were to
use the bag-of-words approach, the resulting vectors Vi and Vj would be highly sparse with most
elements equal to zero, which would bias the distance measure (6) to zero.

The root cause of the problem is that the distance measure in (6) has no way of accounting for
words with similar meanings. For example, consider a set of two documents, with the first document
containing the words ‘dog’ and ‘cat’ and the other containing the words ‘puppy’ and ‘kitten’. Even
though the two documents carry essentially the same meaning, the bag of words approach will
conclude that they are distinct: the representation of the two documents is V1 = [1, 1, 0, 0] and
V2 = [0, 0, 1, 1], which implies that the two documents are orthogonal, ρ1,2 = 0.

To overcome this challenge, we leverage recent advances in natural language processing that
allow for synonyms. The main idea behind this approach is to represent each word as a dense vector.
The distance between two word vectors is then related to the likelihood these words capture a similar
meaning. In our approach, we use the word vectors provided by Pennington, Socher, and Manning
(2014), which contains a vocabulary of 1.9 million word meanings (embeddings) represented as
(300-dimensional) vectors.7 Appendix Section A.2 contains a brief discussion of how the Pennington
et al. (2014) word embeddings are constructed.

The next step consists of using these word vectors to construct measures of document similarity.
To begin, we first construct a weighted average of the word embeddings with a document (a patent or
occupation description). Specifically, we represent each document as a (dense) vector Xi, constructed
as a weighted average of the set of word vectors xk ∈ Ai contained in the document,

Xi =
∑
xk∈Ai

wi,kxk. (7)

7The basis for this word vector space is arbitrary; distances between word embeddings are only well-defined
in relation to one another and a different training instance of the same data would yield different word vectors
but very similar pairwise distances between word vectors. The two most popular approaches are the “word2vec”
method of Mikolov, Sutskever, Chen, Corrado, and Dean (2013) and the global vectors for word representation
introduced by Pennington et al. (2014). These papers construct mappings from extremely sparse and high-dimensional
word co-occurence counts to dense and comparatively low-dimensional vector representations of word meanings
called word embeddings. Their word vectors are highly successful at capturing synonyms and word analogies
(vec(king) − vec(queen) ≈ vec(man) − vec(woman) or vec(Lisbon) − vec(Portugal) ≈ vec(Madrid) − vec(Spain), for
example). Thus they are well-suited for numerical representations of the “distance” between words. The word vectors
provided by Pennington et al. (2014) are trained on 42 billion word tokens of web data from Common Crawl and are
available at https://nlp.stanford.edu/projects/glove/.
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A key part of the procedure consists of choosing appropriate weights wi,k in order to emphasize
important words in the document.

In natural language processing, a common approach to emphasize terms that are most diagnostic
of a document’s topical content is the ‘term-frequency-inverse-document-frequency’ (TF-IDF). We
follow the same approach: in constructing (7), we weigh each word vector by

wi,k ≡ TFi,k × IDFk. (8)

The first component of the weight, term frequency (TF), is defined as

TFi,k = ci,k∑
j ci,j

, (9)

where ci,k denotes the count of the k-th word in document i—a measure of its relative importance
within the document.

The inverse-document frequency is

IDFk = log
( # of documents in sample
# of documents that include term k

)
. (10)

Thus, IDFk measures the informativeness of term k by under-weighting common words that appear
in many documents, as these are less diagnostic of the content of any individual document.

In brief, TFIDFi,k overweighs word vectors for terms that occur relatively frequently within a
given document and underweighs terms that occur commonly across all documents. We compute the
inverse-document-frequency for the set of patents and occupation tasks separately, so that patent
document vectors underweight word embeddings for terms appearing in many patents and occupation
vectors underweight word embeddings for job task terms that appear in the task descriptions of
many other occupations.

Armed with a vector representation of the document that accounts for synonyms, we next use
the cosine similarity to measure the similarity between patent i and occupation j,

Simi,j = Xi

||Xi||
· Xj

||Xj ||
(11)

This is the same distance metric as the bag of words approach, except now Xi and Xj are dense
vectors carrying a geometric interpretation akin to a weighted average of the semantic meaning of
all nouns and verbs in the respective documents.

In sum, we use a combination of word embeddings and TF-IDF weights in constructing a distance
metric between a patent document (which includes the abstract, claims, and the detailed description
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of the patented invention) and the detailed description of the tasks performed by occupations. Our
methodology is conceptually related, though distinct, to the method proposed by Webb (2019), who
also analyzes the similarity between a patent and O*NET job tasks.8

2.2 Examples

To illustrate the effectiveness of our methodology in identifying links between technology and occu-
pation task descriptions, we consider a few representative examples, some of which are summarized
in Figure 1.

A key advantage of our measure is that it is available over long periods of time, and thus allows
us to study very different technologies from three distinct periods of technological change–the Second
Industrial Revolution of the late 1800’s, the period spanning the from 1920s to around 1940, and the
information technology revolution spanning the end of the 20th and beginning of the 21st centuries.
For example, consider three patents in the list of breakthrough patents identified by Kelly et al.
(2020). Patent 276,146, titled “Knitting Machine”, was issued in the height of the Second Industrial
Revolution in 1883. The occupation that is most closely related to this patent is “Textile Knitting
and Weaving Machine Setters, Operators, and Tenders”; the next most similar occupation is “Sewing
Machine Hand Operators”, followed by “Sewers, hand”. Next consider the patent for “Metal wheel
for vehicles (1,405,358), which is issued in 1922. The occupation most closely related to this patent
is “Automotive Service Technicians and Mechanics”, with other production and metal machine
workers following. Finally, we examine a patent from a very different era and representing a very
different technology. The patent, entitled “System for managing financial accounts by a priority
allocation of funds among accounts,” is U.S. patent number 5,911,135 and was issued in 1999. The
top occupations related to this patent are Financial managers, credit analysts, loan interviewers
and clerks.

We next perform the reverse exercise, where we fix a particular occupation, and list the
most relevant innovations. The occupations we choose are cashiers, loan interviewers and clerks,
and railroad conductors. Table A.2 lists the top five patents that are linked to each of these
occupations. Examining the patent tiles, we see that each one of these patents is directly related to
the work performed by the given occupation. For example, one of the top patents for cashiers is

8Webb (2019) focuses on similarity in verb-object pairs in the title and the abstract of patents with verb-object
pairs in the job task descriptions and restricts his attention to patents identified as being related to robots, AI, or
software. He uses word hierarchies obtained from WordNet to determine similarity in verb-object pairings. By contrast,
we infer document similarity by using geometric representations of word meanings (GloVe) that have been estimated
directly from word co-occurence counts. Furthermore, we use not only the abstract but the entirety of the patent
document—which includes the abstract, claims, and the detailed description of the patented invention. In addition to
employing a different methodology, we also have a broader focus: we are interested in constructing time-series indices
of technology exposures. As such, we compute occupation-patent distance measures for all occupations and the entire
set of USPTO patents since 1836.
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“Vending type machine dispensing a redeemable credit voucher upon payment interrupt” (patent
5,055,657); the top patent for loan interviewers and clerks is titled “Automatic business and financial
transaction processing system” (patent number 6,289,319). And finally, for rail road conductors,
titled “Automatic train control system and method” (patent 5,828,979) is the top patent. In general
the patents showing up on this list represent technologies that (1) relate to the work performed
by individuals in that the occupation; and (2) if adopted, appear likely to be able to change the
way that an occupation performs its core work functions and/or substitute for work done by that
occupation.

In sum, these examples illustrate the ability of our method in identifying technologies that are
related to a particular occupation. However, it is not immediately obvious whether these technologies
benefitted workers in these occupations or whether they led to the displacement of workers. As a
concrete example, consider US patent number 6,289,319, titled “Automatic business and financial
transaction processing system”, and which as shown in Table A.1 is the most similar patent to
the “Loan Interviewers and Clerks” occupation. The DOT task description indicates that a person
with this occupation “calls or writes to credit bureaus, employers, and personal references to check
credit and personal references.” The description of this patent states that “Loan processing has
traditionally been a labor-intensive business...the principal object of this invention is to provide an
economical means for screening loan applications.” We interpret this innovation as an example of a
technology which has high potential to be labor saving because it is intended to perform the same
tasks performed manually by a worker in a more efficient manner.

However, there are also many counter-examples of new technologies that improve the productivity
of tasks that workers are currently performing. Our exposure measure potentially also picks up these
instances. For instance consider the occupation “Database Administrators” (SOC code 151141).
According to the DOT, a database administrator “coordinates physical changes to computer
databases.” According to our distance measure, one of the most similar patents to this occupation is
US patent number 5,093,782, entitled “Real time event driven database management system.” This
patent indicates that it provides “a database management system which is capable of supporting
processes requiring the updating and retrieval of data elements at a high rate.” This is likely to
make the work of database administrators more efficient and hence looks more likely to be labor
productivity-enhancing for this occupation.

Most likely, some of these technologies benefitted some workers at the expense of others. To
illustrate the potential for such differential effects across workers of different skill levels, we consider
two examples of labor saving technologies from Jerome (1934). First, consider two key innovations in
the textile weaving industry during the early 20th century, the Barber-Colman warp-tying machine
(patent 1,115,399) and the drawing-in machine (patent 1,364,091). Both of these technologies
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benefitted skilled workers at the expense of unskilled labor. Jerome (1934) notes that, the Barber-
Colman warp-tying machine “will do the work of about 15 hand operators” while “it can be run
by one tender.” Similarly, he notes that “It is estimated that each (drawing-in machine) machine,
requiring ordinarily the attention of one operator and half the time of an assistant, replaces from 5
to 6 hand drawers-in.” Both of these patents are identified as breakthrough patents by Kelly et al.
(2020). In terms of related occupations, our methodology identifies various types of textile workers
as being the some of the most relevant.

However, not all labor-saving technologies benefit skilled labor. For instance, consider two
major innovations in the window glass industry during the late 19th century—the Colburn sheet
machine (patent 840,833) and the cylinder machine (patent 814,612). Following their introduction,
the manufacturing process for window glass switched from being hand-made to being entirely
mechanized by 1925. The displacement of skilled workers was rapid: by 1905 many hand plants
had gone out of business, wages of blowers and gatherers were reduced 40 per cent. Jerome (1934)
summarizes their impact thus: “In the quarter century following the introduction of machine blowing,
the window-glass industry, one of the last strongholds of specialized handicraft skill, has undergone
a technological revolution resulting in the almost complete disappearance of the hand branch of
the industry and the elimination of two skilled trades and one semiskilled, and also the partial
elimination of the skilled flatteners. The contest for supremacy now lies between the cylinder and the
sheet machine processes.” Both of these patents are in the top 10% of the Kelly et al. (2020) measure.
In terms of our methodology, we identify “glaziers” and “molders, shapers, and casters, except metal
and plastic” as being among the most related occupations to these two patents. Specifically, the
latter occupation, which corresponds SOC code 519195, has a sub-occupation called “glass blowers,
molders, benders, and finishers”.

These two examples illustrate that the impact of a new technology on a given worker is not
ex-ante obvious. Some technologies may replace un-skilled workers, while others may displace highly
specialized and skilled workers. Indeed as Jerome (1934) notes, glass workers displaced by the sheet
and cylinder machines in their time were considered to be members of skilled trade. Goldin and Katz
(2008, Chapter 3) provide a number of historical examples where technological advances standardized
tasks formerly performed by skilled artisans so that they could be performed by unskilled workers
(see also Acemoglu, Gancia, and Zilibotti, 2012, for a related theoretical treatment of such a process).
Further, new technologies may also generate demand for new skills—for example, the operators
of the Barber-Colman warp-tying machine—hence their long-run effects may be different than
their short-run impact. Hence, a significant part of the paper focuses on examining the correlation
between our technology exposures and subsequent labor market outcomes.
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2.3 Identifying Variation in Technology Exposures over Time

Our analysis so far delivers a measure of similarity between a given patent and a given occupation.
The next step is to construct time-series indices of technological exposure at the occupation level.
The key challenge in constructing a time-varying index lies in choosing how to appropriately quantify
the ‘degree’ of innovation that occurs at a given point in time. One possibility would be to count
the number of patents; however, this approach is unlikely to be fruitful, since not all patents are
equally important. Various approaches have been proposed, which essentially weight patents by
their forward citations (Hall, Jaffe, and Trajtenberg, 2005); estimates of their market value (Kogan,
Papanikolaou, Seru, and Stoffman, 2017); or their textual similarity to prior and subsequent patents
(Kelly et al., 2020).

For our purposes, we choose the Kelly et al. (2020) approach for two reasons: first, unlike forward
citations, their measure is available for the entirety of our sample; second, it is available for all
patents, and not just patents issued to publicly traded firms; and third, we are primarily interested
in the contribution of a patent on the technology frontier rather than their private value to their
firm.

We define our time series index of exposure of occupation i to technology at time t as

ηi,t = 1
κt

∑
j∈Γt

ρ̃i,j × 1(q̃j,t ≥ q̃p90). (12)

Our time-series index (12) aggregates our patent-occupation similarity scores across all breakthrough
patents issued in year t. Specifically, we sum over the occupation-patent similarity score ρ̃i,j across
the set of patents j ∈ Γt that are issued in year t. We restrict attention to breakthrough patents,
that is, patents whose Kelly et al. (2020) ratio of importance q̃j,t exceeds the (unconditional) 90th
percentile q̃p90.

When computing (12), we use an adjusted occupation-patent exposure metric ρ̃i,j . Specifically,
we perform the following adjustments to our raw occupation-patent exposure ρi,j from (6). First, we
remove yearly fixed effects. We do so in order to account for language and structural differences in
patent documents over time and technology areas.9 Second, we impose sparsity: after removing the
fixed effects we set all patent × occupation pairs to zero that are below the 80th percentile in fixed-
effect adjusted similarity. Last, we scale the remaining non-zero pairs such that a patent/occupation
pair at the 80th percentile of yearly adjusted similarities has a score equal to zero and the maximum
adjusted score equals one.

9Patents have become much longer and use much more technical language over the sample period, and the OCR
text recognition of very early patents is far from perfect. We also slightly modify the Kelly et al. (2020) procedure
by adjusting for the interaction between year and technology fixed effects, since some tech classes tend to have a
naturally higher ratio of forward to backward patent similarity.
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2.4 Which occupations are more exposed?

Overall, we find that over the span of our sample, service-type occupations that specialize in
person-to-person interaction scoring especially low on average exposure. In particular, Table A.3
lists the top and bottom five occupations by average exposure over the time period spanning since
1850. The most exposed occupation is titled “Inspectors, Testers, Sorters, Samplers, and Weighers”.
The top occupations tend to be those working in production and manufacturing type jobs, which are
commonly posited to be among the type of occupations most affected by new technologies. The least
exposed occupations are mental health counselors, dancers, funeral attendants, judges, and clergy,
all representing service job types that are unlikely to have the nature of their work substantially
changed by new technologies.

Related to this point, Autor and Dorn (2013) argue that middle skill occupations have been
significantly more exposed to technological innovation that low-skill workers. Using our direct
measure of technology exposure, we can verify this is indeed the case. Specifically, we can examine
how the technology exposure of occupations varies by ‘skill levels’ as proxied by wages. We obtain
information on average wages by occupation from the Current Population Survey Merged Outgoing
Rotation Groups (MORG, see Appendix A.4 for more details). Given the short time dimension of
the data (MORG starts in 1980), we focus on cross-sectional comparisons.

Figure 2 we plot exposures against average wage percentile ranks for the post-1980 period.
Consistent with Autor and Dorn (2013), we see that the most exposed occupations tend to be found
in the middle of the income distribution.

2.5 Long-run trends

We begin by documenting the types of occupation that are exposed to technological innovation,
and how these exposures have shifted over time. To this end, we group each occupation into
eight broad categories: service; sales and office; production, transportation, and material moving;
natural resources, construction, and maintenance; management, business, and financial; healthcare
practitioners; education, legal, community service, arts and media; and, computer, engineering, and
science. Within each of these groups we take the average of ηi,t and then scale across the eight
groups each year so that the total sums to one. Figure 3 plots these shares over the entire sample
(1850 to the present).

Examining Figure 3, there are two points worth noting. First, ‘blue-collar’ occupations, that is,
those related to production and construction, have been consistently more exposed to technological
progress than the others. Second, this trend has materially shifted over the recent decades, possibly
due to the Information Technology (IT) revolution. Starting around the 1950s, there has been a
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secular increase in the relative technology exposure of ‘white-collar’ occupations. This rise is most
visible in the increased exposure of computer, engineering, and science occupations. Sales and office
occupations have also seen an increased relationship with innovation, as well as management/business
occupations, though these two groups remain small in their overall exposure.

A useful way of summarizing these trends is examining the characteristics of occupations most
exposed to technology at a given point in time. We first examine what kinds of tasks are performed
by these occupations. Basing our analysis on Acemoglu and Autor (2011), we focus on four
task categories: manual tasks (routine and physical); non-routine manual (interpersonal); routine
cognitive; and non-routine cognitive.10 Let Tw(i) be an indicator function that equals 1 if occupation
i has a score in the top quintile across occupations for task w; also denote by ωi the Acemoglu
and Autor (2011) employment shares for occupation i. We then construct an index λw,t of the
technological exposure of task category w as follows:

λw,t =
∑
i

ηi,t × Tw(i)× ωi (13)

Figure 4 plots our measure of technology exposure λw,t, now separated for each of these task
categories. The top panel (Panel A) plots these series in levels; the bottom panel (Panel B) plots
their composition. The overall time-series behavior of our measures largely mimics the series of
Kelly et al. (2020)—which is not surprising, given that we use their definition of breakthrough
patents. We note three major innovation waves, lasting from 1870 to 1890; 1910 to 1930; and from
1970 to the present. The first peak corresponds to the beginning of the second industrial revolution,
which saw technological advances such as the telephone and electric lighting and improvements in
railroads. The second peak corresponds to advances in manufacturing, particularly in plastics and
chemicals, consistent with the evidence of Field (2003). The latest wave of technological progress
includes revolutions in information technology.

Importantly, we see that the first two major innovation waves were primarily related to occupa-
tions performing non-interpersonal manual tasks. By contrast, cognitive tasks are significantly less
exposed. However, starting from the 1970s, there is a shift in the relative exposure of occupations
emphasizing cognitive tasks, especially routine cognitive tasks. As a result, in the last few decades,
these occupations are almost as exposed to innovation as occupations emphasizing manual tasks.
This pattern is driven by information technology revolution that has led to the modern digitalization
of the workplace. Occupations that relate to these type of innovations have a distinctly different

10Because the routine manual and non-routine manual (physical) task scores are highly correlated and also move
similarly with technological exposure, we group these two task types into one category by taking the average of the
two scores. For similar reasons we take the average of non-routine cognitive (analytical) and non-routine cognitive
(interpersonal) to get a non-routine cognitive score.
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task profile than the most prevalent technologies of past innovation waves. That said, even in the
recent period, occupations emphasizing interpersonal tasks remain the least exposed to technological
change. This pattern is consistent with the findings of Autor and Dorn (2013), who show that
service occupations have increased in importance at the expense of occupations heavily exposed to
automation, and also Deming (2017), who documents an increased importance of social skills in the
labor market.

We next separate occupations by their education requirements. Specifically, we compute the
share of workers in that occupation who have either completed a 4-year college degree or have
attained a high-school diploma or lower in in a given year. For this analysis we crosswalk occupations
to David Dorn’s revised Census occ1990 level. We impute college grad and above/high school
or below occupation shares for years between Census decades by linearly interpolating between
the nearest available Census years and similarly interpolate occupational employment shares ωi,t
between Census years. We then let Ss,t(i) be an indicator for whether occupation i is in the top
quintile of the share of workers in education category s in year t. Due to data availability, we begin
our analysis in 1950. We define the education exposure index ζs,t similarly to λw,t:

ζs,t =
∑
i

ηi,t × Ss,t(i)× ωi,t (14)

Figure 5 presents our results. For most of the sample, we see that occupations requiring a
college degree are significantly less exposed to innovation than occupations requiring a lower level of
education. However, and consistent with the discussion above, we see that this pattern is shifting in
the recent decades: towards the end of the sample, the difference in technology exposure between
occupations requiring a college degree with those that do not has shrunk dramatically. This is
especially evident in panel B of Figure 5 where we plot the composition rather than the levels of
technological exposure. It’s also important to note that this pattern is not driven by the increase
in the share of workers with a college degree, since we assign occupations to the high education
group based on their ranking in the cross-sectional distribution of occupational college grad shares.
Rather, this pattern is driven by compositional shifts in the types of technologies being introduced,
with an increasing share of technologies being targeted towards the tasks performed by relatively
more educated occupations.

3 Technology Shocks and Labor Market Outcomes

In Section 1 we documented that breakthrough innovations are on average associated with increases
in measured productivity and declines in labor share. Now, armed with an additional source
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of cross-sectional variation—differences in occupation exposure to specific technologies—we can
examine a more direct link between technological progress and outcomes for specific workers.

We begin by focusing on group (i.e. occupation-level) outcomes in Section 3.1. The advantage of
doing so is that we can examine the relation between our measure and labor market outcomes over a
long period of time. The disadvantage of doing so is that patterns in some occupation-level outcomes,
specifically wages, can mask important worker-level heterogeneity within the occupation. Thus, in
Section 3.2 we focus on outcomes of individual workers using administrative data on worker earnings.
Focusing on individual workers allows us to more closely trace the correlation between innovation
and individual outcomes, while also enabling us to condition on certain observable characteristics.
The disadvantage of the Census administrative data is that it is available only since the mid-1990s.

3.1 Occupation-level Evidence from repeated cross-sections

We begin by examining the relation between innovation and subsequent growth in the employment
shares and average wage earnings of exposed occupations.

Data

The availability of public Census data allows us to examine employment outcomes over a long
period of time (1850 to today). The Census surveys consist of repeated cross-sectional observations.
Important for our purposes they contain information on occupations, which we can link to our
innovation measure ηi,t constructed in equation (12). Specifically, we use the 1950 Census occupation
definition for pre-1950 Census years since the more updated 1990 Census classification scheme is only
available in post-1950 Census years. We make use of the 1990 Census occupation classifications for
the years they are available. We then crosswalk Census occupations to the David Dorn occ1990dd
classification scheme using the crosswalk files provided on his website and aggregate our measure
ηi,t to the occ1990dd-level by averaging across 6-digit SOC codes within an occ1990dd code. This
results in a Census-year by occ1990dd panel of occupation employment shares. Census records for
the year 1890 were destroyed in a fire, and so the employment growth observations for the 20-year
horizon in 1870 or for the 10-year horizon in 1880 are not available. The final dataset consists of an
unbalanced panel of occupation–Census year employment shares and spans the Census years from
1850 to 2010. Appendix A.4 provides additional details.

In addition, we use more recent data from the Current Population Survey Merged Outgoing
Rotation Groups (MORG) which provides data on both wages and employment outcomes for the
post-1980 period. We use the data to create a balanced panel of wage earnings and employment
growth at the level of occupation and calendar year. We obtain the cleaned MORG extracts provided
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by the Center for Economic Policy Research (CEPR). In particular, we use the “wage3” variable
that combines the hourly earnings for hourly workers and non-hourly workers, adjusts for top-coding
using a lognormal imputation, and is constructed to match the NBER’s recommendation for the
most consistent hourly wage series from 1979 to the present.

Technology exposure and employment (1850–present)

We examine employment outcomes using the following specification,

1
k

(
log Yi,t+k − log Yi,t

)
= α0 + αt + β(k) ηi,t + λYi,t + εi,t, k = 10, 20 years. (15)

The main dependent variable Yi,t is the employment share in total non-farm employment. Obser-
vations are weighted by the employment share of the given occupation and standard errors are
clustered by occupation. As before, ηi,t is normalized to unit standard deviation. All specifications
include time fixed effects; depending on the specification, we include controls for the lagged 10-year
employment growth rate.

Panel A of Table 1 presents our findings. We note that there is a strong and statistically significant
negative correlation between our innovation measure η and subsequent changes in employment at
the occupation level. The magnitudes are significant: a one-standard deviation increase in ηi,t is
associated with a 0.41% annualized decline in employment over the next 10 years and a 0.70%
percent decrease in employment over the next 20 years.

We next allow the slope coefficients β to vary across Census years, focusing on horizons of k = 20
years. Figure 7 plots the point estimates of β for each Census year along with the 90% confidence
intervals based on standard errors clustered by occupation. Examining the figure, we see that the
point estimates are negative for all but the 1860 and 1940 Censuses, and are significant in 1880,
1910, 1920, 1950, 1970, 1980, and 1990. The magnitude of this correlation is also fairly stable over
time, implying that occupations that are exposed to innovation have had consistently experienced
employment declines over the entire 150 year period.11

One potential concern with these findings is that they reflect industry trends. To separate
our findings from industry-level sources of variation, we next aggregate the Census data at the
occupation by industry level over time. We use the 1950 Census industry designations, which are
available the furthest back in time. Because Census industry codes are unreliable before 1910 we
start our analysis using the data from the 1910 Census. We therefore estimate a slightly modified

11In 1930, John Maynard Keynes wrote: “We are being afflicted with a new disease of technological unemploy-
ment...due to our discovery of means of economising the use of labor outrunning the pace at which we can find new
uses for labor." (Keynes, 1930). Indeed, the 1920–40 period corresponded with a large innovation wave that was
associated significant declines in employment for occupations whose tasks were related to those innovations.
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version of equation (15),

1
k

(
log Yi,j,t+k)− log Yi,j,t

)
= α0 + β(k)ηi,t + δZt,j + εi,j,t, k = 10, 20 years. (16)

The dependent variable Yi,j,t now represent the share of total non-farm employment for occupation
i in industry j. The vector of controls Zt,j now contains time, or industry–time dummies depending
on the specification, as well as lagged values of the dependent variable at the industry–occupation
cell. The inclusion of industry–time allows us to isolate our findings from industry-specific trends in
the sample.

Examining Panel B of Table 1, we see that the estimated slope coefficient on our innovation
measure is consistently negative and economically and statistically significant. Overall, a one-
standard deviation increase in ηi,t is associated with a 0.60% to 0.89% decline in employment
over the next 20-year horizon. The fact that this negative relation is essentially unaffected by the
inclusion of industry-time fixed effects illustrates that our findings are not merely driven by the
decline of certain industries which happen to employ workers with high technology exposure. Rather,
much of the negative employment effects exist within, rather than between, industries. That said,
the fact that the coefficients do attenuate slightly when including industry fixed effects indicates that
high ηi,t occupations tend to be employed in industries that have experienced overall employment
declines.

Technology exposure, employment, and wages (1980–present)

We next turn our attention to the post-1980 period. We estimate the following specification

1
k

(
log Yi,t+k)− log Yi,t

)
= α+ β(k)ηi,t + δZi,t + εi,t, k = 5 . . . 20 years. (17)

Here, Yi,t represents wage earnings or employment for a given occupationi in calendar year t. The
vector of controls Zi,t includes three lagged one-year growth rates of the dependent variable and
time fixed effects. As before, ηi,t is normalized to a unit standard deviation.

Figure 8 plots the estimated coefficients β along with 90% confidence intervals. We note that
the responses for both wages and employment are strongly negative for all horizons. The point
estimates are both economically and statistically significant and are comparable across horizons,
suggesting these are permanent effects. Focusing on employment changes, a one-standard deviation
increase in our technology exposure is associated with approximately a 1.1% annualized decline in
occupation employment over the next five to twenty years. Similarly, our innovation measure also
predicts a significant decline in wage earnings: a one-standard deviation increase in ηi,t is followed
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by a decline in average wage earnings of approximately 0.2% to 0.3% per year over the same period.
Comparing the magnitude of employment declines in the MORG sample to the long-run (Census)

results in Table 1 above, we note that the coefficient magnitudes are largely comparable. This is
noteworthy in lieu of the fact the nature of breakthrough innovations in the post-1980 period is
somewhat distinct than in the pre-1980 sample. As we saw in Figure 4, recent innovations are
significantly more related to occupations performing routine cognitive tasks.

Recent work has argued that recessions are periods of technological transformation and thus ac-
celerated automation of routine jobs (Jaimovich and Siu, 2018; Kopytov, Roussanov, and Taschereau-
Dumouchel, 2018; Zhang, 2019). Consistent with this view, we next provide some direct evidence
using our measure of technology exposure. In Figure 9 we see that occupations which were in the
top quintile of ηi,t in 1985 experienced stark declines in employment around the 1991, 2001, and
2007-2008 recessions, with a flatter but slightly declining profile in between recessions. Meanwhile,
assigning occupations into the top quintile of routine-task intensity in 1985, we do see a persistent
decline over the time period, but a much less pronounced pattern around recessions. This pattern is
consistent with models of innovation-related job displacement where the opportunity to replace labor
with an automation technology is a real option for firms. For example, Zhang (2019) shows that in
a production based asset pricing model where firms choose to invest in labor-saving technologies,
they choose to exercise this option when expected cash flows are temporarily low. Therefore the
pattern exhibited in Figure 9 is consistent with employers replacing high ηi,t workers with capital
when the exercise value for doing so is high.

3.2 Individual-level evidence from panel administrative earnings data

Next, we turn our attention to individual worker outcomes. Doing so allows us to not only more
directly link innovation to specific worker outcomes, but it also allows us to examine how this relation
varies with observable worker characteristics. In particular, the detailed nature of administrative
data allows us to examine how the relation between innovation and worker outcomes varies with
proxies for worker skill, such as education or past earnings.

Data

We use a random sample of individual workers tracked by the Current Population Survey (CPS) and
their associated Detailed Earnings Records from the Census—which contains their W2 tax income.
The CPS includes information on occupation as well as demographic information such as age and
gender. We limit the sample to individuals who are older than 25 and younger than 55 years old and
to periods where the CPS interview date is less than 5 years old so that the occupation information
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is relatively recent.
We construct a measure of forward looking wage earnings growth following Autor, Dorn, Hanson,

and Song (2014); Guvenen, Ozkan, and Song (2014); Kogan et al. (2020)

gi,t:t+h ≡ wit+1,t+h − wit−2,t. (18)

where wit+1,t+h refers to average age-adjusted earnings over the period, defined as

wit,t+h ≡ log
(∑h

j=0 W-2 earningsi,t+j∑k
j=0D(agei,t+j)

)
. (19)

refers to worker earnings net of life cycle effects. We focus on horizons of h = 3, 5, and 10 years.
Appendix A.5 provides more details on the construction of the data and the patch to patent
information.

Given that the administrative data sample has a shorter time dimension and a larger cross-section
than our other data, we make some modifications to our construction of our worker technology
exposure measure η. First, we identify important patents based on their 5-year, as opposed to
10-year forward similarity. This allows us to extend the sample by five additional years, which helps
with the short length of the sample. Further, to fully take advantage of the larger cross-section, we
allow our baseline innovation exposure measure η to also vary by industry, by restricting attention to
patents issued to firms in the same 4-digit NAICS industry as the worker. Letting j index patents as
before; Γk,t denote the set of patents issued in industry k in year t; o(i) the occupation of individual
i; and k(i, t) the industry of individual i in year t, we redefine our time series index of exposure of
worker i to technology at time t as

ηi,t = 1
κt

∑
j∈Γk(i,t),t

ρ̃o(i),j × 1(q̃j,t ≥ q̃p90). (20)

In brief, our technology exposure metric (20) is largely the same as before, except that we now focus
only on breakthrough patents in the industry in which worker i is currently employed—that is, ηi,t
defined in (20) now varies by occupation, industry, and year instead of just occupation and year
as (12).

Given these restrictions imposed by the Census-CPS merged file and the nature of our innovation
data, we are left with approximately 1.2 million person-year observations spanning the period from
1988 to 2016. In terms of demographics, approximately 58% of the sample is male and 46% of the
observations correspond to workers with a college degree. Table 2 provides more details on the
distribution of age and worker earnings: the median worker in the sample is 41 years old and earns
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approximately $58k per year. The distribution of earnings is rather skewed however: the average is
equal to $75k while the 5th and 95th percentiles are equal to $14k and $172k, respectively. The
last set of rows of Table 2 summarize the distribution of our (age-adjusted) cumulative earnings
growth (18). At a horizon of h = 5 years, the median is equal to 0.011 while the mean is -0.063;
given that (18) corresponds to a log difference, the large dispersion in earnings induces the mean
growth rate to be negative due to Jensen’s inequality. That said, the distribution is also highly
negatively skewed: the 5th percentile is equal to -0.968 log points while the 95th percentile is equal
to 0.574.

An illustrative example

Before examining the correlation between our technology measure and subsequent wage growth,
it is informative to look at particular examples. We choose the rise of e-commerce—and more
specifically the automatic fulfillment of retail purchase orders. Advances in information technology
and telecommunications have obviated the need for manual processing of customer orders. Using our
patent-based indicators we can identify the 1996 to 2002 period as a period of significant innovation
related to the tasks performed by order-fulfillment clerks. Examples of such breakthrough innovations
early on include U.S. Patent 5,696,906 for “Telecommunication user account management system
and method”; Patent 5,592,560 for “Method and system for building a database and performing
marketing based upon prior shopping history”; or Patent 5,628,004 for “System for managing
database of communication of recipients”. Appendix Table A.9 contains a longer list—the top 10
most related breakthrough patents to order fulfillment clerks issued in the 1997 to 2000 period.

To study the impact of these breakthroughs on worker earnings, Figure 10 contrasts labor market
outcomes for order fulfillment clerks versus a set of workers in two related occupations unlikely to
be affected by these innovations: personnel and library clerks.12 The top panel of Figure 10 plots
the average real wage (in 2015 US dollars) differential across the two sets of workers—normalized to
be zero in 1997. The bottom panel plots the difference in average technology exposure from (20)
for workers employed as order clerks across industries relative to workers employed as personnel or
library clerks.

Examining the top panel, we note that relative wage trends for the two occupations were fairly
flat prior to 1997. However, since then they begin to systematically diverge. The bottom panel
shows that this divergence coincided with significant breakthrough innovations that were related
more to order than library clerks. Beginning in 1996, there is a sustained increase in (relative)

12The DOT indicates that an order clerk ‘Processes orders for material or merchandise received by mail, telephone,
or personally from customer or company employee, manually or using computer or calculating machine...informs
customer of any information needed...using mail or telephone. Writes or types order form, or enters data into computer,
to determine total cost for customer. Records or files copy of orders."
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innovation that persists for several years. By 2007, order clerks’ average annual wages had declined
by nearly $30,000 relative to personnel/library clerks.

Our preferred interpretation of the patterns in Figure 10 is that improvements in the automatic
processing of orders displaced workers whose primary task was to fulfill orders. Naturally, we
cannot exclude the possibility that these patterns reflect industry- or occupation-specific trends.
Fortunately, our empirical design outlined below allows us to control for both industry- as well as
occupation-specific year fixed effects.

Innovation and worker earnings growth

We estimate the following specification,

gi,t:t+h = α+ β(h) ηi,t + δZi,t + εi,t. (21)

Here, i now refers to a particular worker; as such, the left hand side represents the growth in her
average earnings over the next h years compares to the last three. The main variable of interest ηi,t
now refers to the workers’ technology exposure, specifically, the level of breakthrough innovations
that are closely related to her occupation that are filed by firms in the same industry (based on
NAICS 4-digit codes) as the worker. We examine earnings responses over the next h = 3, 5 and 10
years. The vector Z includes a rich set of controls that aim to soak up ex-ante worker heterogeneity.
Specifically, we include various combinations of year, occupation and industry fixed effects—our
most conservative specification interacts the latter two with calendar year to account for occupation-
or industry-specific time trends. In addition, we include flexible non-parametric controls for worker
age and past worker earnings as well as recent earnings growth rates.13 Standard errors are clustered
at the industry (NAICS 4-digit) level.

Table 3 summarizes our findings for the average worker in our sample. Overall, we find that
workers’ technology exposure is negatively related to their subsequent earnings growth. Panel A
reports the estimated slope coefficients β(h) for horizons of h = 3, 5, 10 years; different columns
correspond to different fixed effect combinations. The magnitudes are both economically and
statistically significant. Focusing on the 5-year horizon and the most conservative specification that
includes both industry-year and occupation-year fixed effects, we see that a one standard deviation
increase in innovation is associated with a 0.013 log point decline in average worker earnings over

13We construct controls for worker age and lagged earnings wit−4,t by linearly interpolating between 3rd degree
Chebyshev polynomials in workers’ lagged income quantiles within an industry-age bin at 10-year age intervals. In
addition, to soak up some potential variation related to potential mean-reversion in earnings (which could be the
case following large transitory shocks), we also include 3rd degree Chebyshev polynomials in workers’ lagged income
growth rate percentiles, and we allow these coefficients to differ by gender as well as past income levels based on five
gender-specific bins formed based upon a worker’s rank relative to her peers in the same industry and occupation.
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the next five years. These magnitudes increase with the horizon h, ranging from 0.011 to a 0.014
log point decline in average earnings at horizons of three and ten years, respectively.14

In brief, Panel A shows that the average effect of technology exposure on worker earnings is
negative. This negative average effect, however, likely masks considerable heterogeneity in ex-
post worker outcomes. To that end, in Panel B we next examine whether technology exposure is
associated with increases in the second-moment of earnings growth: we estimate a modified version
of (21), in which now the dependent variable is the absolute value of earnings growth. We see that
technology exposure is associated with an increase in the second moment: the absolute value of
earnings growth (21) increases by approximately 0.5 percentage points in response to a one-standard
deviation increase in ηi,t, which corresponds to approximately a 3% increase relative to the sample
median value of the dependent variable (0.157).

Similarly, Panel C examines the increase in the skewness of the earnings distribution, or
equivalently the extent to which the negative average effects documented in Panel A are concentrated
in a subset of workers. Specifically, we construct indicators for whether a given worker’s income
growth over a given horizon falls in the bottom 10th percentile of all our observations within a given
year. Focusing on the same specification, we see that an increase in a worker’s technology exposure
is associated an economically significant increase in the likelihood of large earnings losses for affected
workers: a one-standard deviation increase in ηi,t is associated with a 0.4 percentage point increase
in the likelihood that a worker’s subsequent earnings growth is in the bottom 10th percentile.

Our findings in this section reinforce our findings in Section (3.1) that technology is associated
with occupation-level declines in employment and wages. By tracking the earnings growth of
individual workers, we can ensure that our findings on worker earnings are not driven by selection
across occupations. In addition, individual-level data allows us to paint a more complete picture of
how earnings losses are distributed across workers, even at a particular industry–occupation cell
at a point in time. Building on this idea, the next section examines how these findings vary with
worker characteristics.

Innovation, worker earnings and ex-ante heterogeneity

We next allow the effects to vary by observable worker characteristics. In terms of the heterogeneous
effects of technological progress across workers, existing work has emphasized that (a) much of
technological change is skill biased (see, e.g. Goldin and Katz, 2008, for a textbook reference); (b)
an important component of human capital is likely specific to a technological vintage (Chari and
Hopenhayn, 1991; Jovanovic and Nyarko, 1996; Violante, 2002). Accordingly, we focus on education

14We find no meaningful differences across genders: over the next five years, on average men experience a 0.013 log
point decline and women experience a 0.011 log point decline.
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and prior income as common proxies for worker skill; allowing the impact of technology to vary
by worker age helps tease out the effect of vintage-specific human capital. In what follows, we
re-estimate equation (21) and now allow the slope coefficient β(h) to vary across worker sub-groups.
For brevity we focus on the most conservative specification that includes both industry-year and
occupation-year fixed effects. Appendix Tables A.11 to A.12 illustrate that results are similar across
alternate specifications.

Table 4 examines how the effect of technology on worker earnings vary with education, specifically
on whether the worker has a college degree. Focusing on mean growth rates across horizons—columns
(1) to (3)—we see that an increase in technology exposure ηi,t is associated with an economically and
statistically significant decline in average earnings growth for both college and non-college educated
workers. If we interpret education as a proxy for skill, the fact that earnings decline for both groups
is somewhat at odds with the canonical model of skill-based technical change. That said, we do
find that non-college workers experience a somewhat larger decline in average earnings growth than
workers with a college degree, with the difference being marginally statistically significant (p-values
range from 0.043 to 0.11 across horizons). Columns (4) and (5) show that both groups experience
a similar increase in their second moment of earnings growth, while non-college educated workers
experience a somewhat larger increase in the probability of large earnings declines than college
educated workers (0.48 vs 0.35 percentage points).

Table 5 examines how the response of worker earnings growth to ηi,t varies by prior income. In
terms of point estimates, we find a U-shaped pattern: a given increase in a worker’s technology
exposure ηi,t has the largest impact on the earnings growth of not only the least- but also the
highest-paid workers (relative to their peers in the same occupation and industry). These estimates
are noisy: we cannot reject the null that the response of earnings growth of workers at the bottom
quartile is equal to the responses of workers in the 25th to 95th percentile. However, the response of
the most-highly paid workers is both statistically as well as economically distinct from the workers
in the middle group: a one-standard deviation increase in technology exposure is associated with a
0.025 log point decline in their average earnings growth—approximately twice as large as the effect
on the average worker.

At face value, these facts seem at odds with the canonical model of skill-biased technical change:
if technology is complementary to the labor input of skilled workers, to the extent that prior income
is related to worker skill, one would expect to see that top workers should experience an increase in
their average earnings (or at the very least a smaller decline). By contrast, the opposite pattern
obtains. Comparing across columns (1) to (3) we see that these patterns are quantitatively similar
across horizons, suggesting that these effects are highly persistent.

One potential reconciliation of the patterns in Table 5 with the standard view of technology-skill
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complementarity is allowing for vintage-specific human capital. That is, skill is not an immutable
characteristic of the worker; it is the result of experience and learning by operating a particular
technology. When new technologies are introduced, some of that accumulated knowledge becomes
obsolete: skilled workers in the old technology need not remain skilled in the new. If that is the
case, we would expect skilled workers to face greater earnings risk in response to increased rate
of technological innovation due to the possibility of skill displacement. Consistent with this view
columns (4) and (5) of Table 5 show that top earners face significantly greater labor income risk
than the average worker in response to an increase in their technology exposure. Focusing on the
last column, a one-standard deviation increase in ηi,t is associated with a 1.26 percentage point
increase that these workers experience a large earnings decline (earnings growth in the bottom
10-the percentile) which is approximately three times higher than the average worker.

Table 6 provides additional support to the idea of vintage-specific human capital by examining
how these effects vary with worker age. Older workers are both more likely to have accumulated
skills in existing technology and also less likely to be able to become familiar with new production
methods. Accordingly, we see that older workers (those in the 45 to 55 range) experience significantly
greater declines in earnings growth (0.02 to 0.025 log points across horizons) relative to workers
aged 35–45 (0.9 to 1.4 log point decline) or 25–35 (0.4 to 0.9 log point decline). Columns (4) and
(5) similarly show that earnings risk in response to an increase in technology exposure is increasing
in age: a one-standard deviation increase in ηi,t is associated with a 0.9 percentage point increase
in the likelihood of a large earnings decline for workers aged 45–55, compared to a 0.2 percentage
point increase for younger workers.

Discussion

In brief, we find that a given improvement in technology leads to lower earnings growth across
all workers. These patterns, together with the positive correlation to industry productivity and
the decline in the labor share documented in Section 1 is consistent with the view that most of
the breakthrough innovations in the sample are labor-saving, that is, they partly replace tasks
performed by workers. The standard view is that increases in automation are more likely to affect
low-skill workers, since low-productivity workers are likely to be replaced first. Some of our findings
are consistent with this view: we find some evidence that workers without a college degree and the
lowest-paid workers experience larger than average earnings declines in response to technological
innovation (though the latter difference is not statistically significant).

However, some of our findings are harder to reconcile with a view that skill is an immutable
characteristic of the worker. Workers that are more highly paid relative to their peers in the same
occupation and industry experience on average significantly larger earnings declines than the average
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worker; further, our findings suggest that much of these average decrease reflects an increase in
the probability of large earnings losses as opposed to a small consistent decline in earnings. Put
differently, the distribution of earnings losses is heterogenous: a subset of skilled workers experience
large earnings declines rather than the entire group experiencing small declines.

This pattern, together with the increased earnings response of older workers suggests a role of
vintage-specific human capital, or equivalently for technology making certain worker skills obsolete.
The model in the next Section 4 formalizes and quantifies this idea more fully. That said, one caveat
in interpreting these patterns is that the period covered by the Census-CPS administrative data
coincides with the rise of very specific technologies, namely ICT. Thus, we should be careful when
extrapolate these findings to other periods of rapid technological progress.

3.3 Additional Results and Robustness Checks

Here we discuss a number of additional results that frame our work to the existing literature and
explore the extent to which our measure underestimates the degree of labor-displacive innovations.

Comparison to Existing Measures of Exposure to Technical Change

Our work is not the first to construct occupation-level measures of exposure to technological change
(Autor and Dorn, 2013; Webb, 2019). A key advantage of our measure relative to existing work is that
it also incorporates time-series variation. That said, it is instructive to explore the extent to which it
contains additional information regarding cross-sectional differences in technology exposures. Here,
we explore this question, and compare the performance of our technology measure in predicting wage
and employment declines relative to the routine-task intensity and the measure of occupation-level
offshorability from Autor and Dorn (2013), and the Webb (2019) measures of exposure to robotics
or software.

To compare our different approaches, we estimate a long-difference cross-sectional specification
similar to Webb (2019) as follows

1
k

(
log Yi,t+T )− log Yi,t

)
= α+ αj + βηi,1980 + δXi + εi,j (22)

Here i indexes occupations and j indexes industries. In estimating (22), we combine information
on wages and employment in the 1980 Census and the 2012 ACS. In particular, we use the 1980
Census and 2012 ACS data from Deming (2017), which are reported at the occupation by industry
by education level, and aggregate the data to industry by occupation. Thus, the dependent variable
denotes either the log change in employment or the change in log wages over the 1980-2012 time
period. We include industry fixed effects αj to account for industry specific shocks that may be
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correlated with occupational outcomes. Controls Xi include occupation employment share in 1980,
occupation log wage in 1980, three indicators for the occupations education level in 1980, the
routine-task intensity and the measure of occupation-level offshorability from Autor and Dorn
(2013), and the Webb (2019) measures of exposure to robotics or software patents, depending on
the specification. We weight observations by the employment share in 1980 and cluster standard
errors by industry.

Tables 9 reports our findings for employment (Panel A) and wages (Panel B). Examining the
first row of each panel, we see that the point estimates (and statistical significance) of β are
essentially unaffected by including the Autor and Dorn (2013) or Webb (2019) measures. We
conclude that cross-sectional differences in ηi,t contain independent information relative to these
alternate cross-sectional metrics.

Alternative approaches to measuring labor displacement

Our technology exposure measure is constructed based on the similarity between patents and tasks
performed by a specific occupation. Ex-ante, it is not entirely obvious whether a high level of
similarity is likely to capture complementarity or substitution between the technology and the
tasks performed by labor. Even though we are finding a consistently negative relation between our
technology exposure measure and subsequent labor market outcomes, it is possible these effects are
muted because our measure mixing labor-saving and labor-enhancing innovations.

To explore this possibility, we next compare the performance of our measure to a purely statistical
predictor that is calibrated to predict employment declines in-sample. To do so, we leverage recent
advances in topic modeling to construct a composite predictor from patent text whose purpose is to
maximize the in-sample predictability of employment declines. This measure is akin to a principal
component; it has no straightforward economic interpretation, but it rather provides a statistical
upper bound on how large the labor-displacive effects could be on a factor that is constructed from
the text of breakthrough patents.15 The correlation between our baseline measure ηi,t and the
statistical predictor constructed to represent exposure to labor-saving technologies is approximately
73 percent.

We then compare the performance of our baseline measure based on patent-task similarity to the
in-sample performance of this statistical factor in the wage and employment regressions in Figure

15We build on the approach proposed by Cong, Liang, and Zhang (2019), which is well-suited to prediction exercises
using large-scale textual data. In brief, this approach can be summarized as follows. We first extract the 500 most
important common factors (topics) from the text of breakthrough patents using the approach of Cong et al. (2019)
and the vector representations of word embedings discussed in Section 2. We then use these 500 textual factors to
form a single predictor that is optimized to predict occupation declines in-sample. To do so, we examine the univariate
performance of each factor in predicting employment declines, and then form a linear combination (the first principal
component) of the predictors that are statistically significant negative predictors at the 5%. We also construct a
labor-enhancing factor using the converse exercise. Appendix ?? describes the procedure in detail.
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8—which can be viewed as an upper bound in the ability of patent text to predict employment
and wages. We find that the performance of our baseline measure is close to this upper bound:
the annualized employment and wage declines predicted by this statistical displacement factor are
1.25% and 0.25%, respectively—compared to 1.12% and 0.20% for our technology measure based
on patent-task similarity. Appendix ?? provides more details. We conclude that our technology
measure based on patent-task similarity primarily captures labor-saving innovations.

Robustness

We perform several checks to explore the extent to which our findings are specific to a particular
period. Appendix Table A.5 shows that our findings on the long-run negative relation between
technology exposure and employment at the occupation level are robust across sub-samples. That
said, Appendix Table A.6 shows that this negative relation is primarily driven by innovation waves:
we separate the sample into two sub-samples, where we define as innovation waves the 20 year
periods beginning in years 1880, 1910, 1920, and 1980, 1990—with the remaining years representing
non-innovation wave periods (for a discussion of the 1920s, see e.g. Field, 2003).

Further, we verify the robustness of our findings to alternative specifications. Appendix Ta-
bles A.11 through A.13 show that our results on heterogenous responses by education, age, and
prior income are largely robust to different combinations of fixed effects and horizons over which we
measure worker earnings.

That said, one particular caveat in interpreting the heterogenous patterns we uncover using the
Census-CPS administrative data is that they are estimated during a very specific time period which
coincides with the rise of very specific technologies (i.e. ICT). The extent to which similar patterns
obtain more broadly during earlier periods is an open question. As a step towards this direction,
we re-estimate our long-run employment results and allow the coefficient to vary by worker age
(the only variable consistently reported since the 1850s in the population sensus). In particular, we
re-estimate 15 but now add a second panel dimension, worker age. That is, the unit of analysis
is not worker occupation-age groups and when we compute employment growth rates we track a
particular cohort. For instance, to compute the 20-year growth rate in employment in 1900 for
workers aged 20–29 in occupation i, we compare it to the employment of 40–49 year old workers in
occupation i in 1920.

Table A.14 reports our findings. Panel A focuses on the full sample. We see that the employment
growth of older workers in a specific occupation is significantly more exposed than the employment
growth of younger workers (difference has a p-value of 0.015). In terms of magnitudes, a one-standard
deviation increase in technology exposure is followed by a 1.1% annual decline in employment for
older workers over the next twenty years, compared to a 0.7% annual decline for younger workers.
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However, Panel B shows that this pattern is largely driven by the latter part of the sample.
Specifically, there are no differences in employment outcomes across age groups during the 1850–
1920 period. In the 1930 to 1960 period, there is some evidence that older workers are significantly
more exposed, but the results are too noisy to infer meaningful differences (p-value of 0.13). By
contrast, focusing on the post-1970 period, the difference is between younger and older workers
becomes larger and statistically significant. We conclude that we cannot rule out the possibility
that our worker heterogeneity results are somewhat specific to the ICT revolution: it is entirely
possible that older workers were significantly more displaced than younger workers by ICT.

4 Model

Here we provide a model that features skill-biased technological change and allows for skill displace-
ment. The model contains a continuum of workers who supply high- and low-skill labor inputs.
Consistent with the literature, the output of the high-skill labor input is more complementary to
technology than the output of the low-skill input. As a result, improvements in technology lead to
an increase in the wages of high-skill workers relative to the wages of low-skill workers. This is a
feature of the standard model.

We extend the model to allow for skill displacement. In particular, improvements in technology
may render some of workers’ skills obsolete—a specific worker may lose a part of her skill when the
technology frontier improves. As a result, even though wages of skilled workers rise in response to
technology, an incumbent skilled worker may experience a decline in wages.

4.1 Setup

We model the output of a given industry. Output is produced by three factors of production:
low-skilled labor L, high-skilled labor H, and intangible capital (technology) ξ. For simplicity, we
will abstract from labor growth and model output per capita Y as

Yt =
[
µ
(
Ht

)σ
+ (1− µ)

(
λ
(
ξt
)ρ

+ (1− λ)
(
Lt
)ρ)σ/ρ]1/σ

(23)

Here, ρ denotes the elasticity of substitution between technology and unskilled labor and σ denotes
the elasticity of substitution between skilled labor and the composite output of technology and
unskilled labor.16 Since the total mass of workers is normalized to one, equation (23) also refers to

16In setting up (23), we have included technology and unskilled labor in the inner nest, and skilled labor in the
outer nest. This is in contrast to the formulation in Krusell et al. (2000); Eisfeldt, Falato, and Xiaolan (2021), but
note that the comparison with these two papers is imperfect, since ξ denotes intangible capital (technology) rather
than physical equipment (machines).

32



labor productivity (output per worker).
The factor ξ is the stock of intangible capital/knowledge embodying the technology used for

producing output Y , similar in spirit to Acemoglu and Restrepo (2018). When we map our empirical
analysis to the model, we will interpret our technology exposure metric ηi,t as a shock to ξ, which
however affects only a subset of workers involved in the production of Y—the model equivalent
to ‘occupations’, described below. Keeping with the literature, we expect technology to be more
complementary to skilled labor relative to unskilled labor, so we will impose the condition that,
in relative terms, shifts in technology are more complementary to skilled than unskilled labor, or
equivalently that

σ < ρ < 1. (24)

Put differently, technology ξ is a better substitute for unskilled rather than skilled labor.
Technology ξ evolves exogenously according to

dξt = −g ξt dt+ κ dNt. (25)

Technology improves according to the process Nt whose increments are Poisson with arrival rate
ω dt. Recall that we have set up output in per capita terms. As such, the negative drift term in
equation (25) reflects the fact that ξ also a per-capita quantity and population grows at rate g.
Given (25), the level of ξ is stationary with a long-run mean equal to κω/g.

Workers are heterogenous along two dimensions. In particular, there is a unit mass of workers
differentiated by their type θ ∈ [0, 1], which determines their endowment of high- and low-skill labor
inputs; workers also vary in their ability to acquire new skills s = {l, h}. Specifically, each worker
can provide θ units of skilled labor H and 1− θ units of unskilled labor L. As a result, the total
supply of skilled labor as a share of population is equal to

Ht =
∫ 1

0
θ pt(θ) dθ, (26)

where pt(θ) is the measure of workers of skill level θ at time t. Since we normalize the total supply
of labor to one,

Lt = 1−Ht. (27)

In addition, workers vary in their ability to acquire new skills—that is, increase their skill level θ.
The share of workers who cannot acquire new skills sl can produce only in the low-skill task so
θ = 0. The remaining share of workers sh = 1− sl, have skill θ ∈ (θ, 1) that evolves over time due
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to learning by doing and technological displacement according to

dθi,t = mθi,t dMi,t − h θi,t di,t dNt, (28)

Here, dMi,t is a Poisson jump with arrival rate φdt that reflects the stochastic acquisition of new
expertise. Since we limit θ ∈ (θ, 1) for these workers, we impose reflecting boundaries at θ and 1.

Importantly, the last term in equation (28) captures the displacive effect of the arrival of new
technologies (dNt = 1). There is a stochastic element in how technology improvements affect
workers: this uncertainty is captured by di,t, which is a random variable with support on the unit
interval and is independent of θit. For now, we assume that di,t i.i.d. distributed across agents and
follows a binomial distribution d ∈ {0, 1} with Prob(d = 1) = α. More generally, we could allow
the distribution of di to vary with certain worker characteristics such as age or education. Affected
workers experience a proportional loss in their human capital (skill) by a factor h. Last, workers
of each type die at Poisson rate δ dt and are replaced by newborn skilled workers with either zero
skill (θ = 0) or the minimum level of skill (θ = θ) for skilled workers with probabilities sl and 1− sl
respectively.17

Given our assumptions (26)–(28), the aggregate supply of skilled labor Ht increases with
learning, decreases as skilled older workers are replaced with unskilled young workers, and decreases
temporarily following periods of rapid technological progress. The latter effect captures the idea
that technological improvements may be associated with lower output in the short run as agents in
their economy need to upgrade their skills to fully take advantage of new innovations—similar in
spirit to Brynjolfsson, Rock, and Syverson (2018).

The current wage of an individual worker with skill level θi,t is equal to

wi,t = WL,t + θi,t (WH,t −WL,t) . (29)

In equilibrium WH,t and WL,t are equal to the marginal product of skilled and unskilled labor,
respectively

WH,t = ∂Yt
∂Ht

, and WL,t = ∂Yt
∂Lt

. (30)

In sum, we provide a model in which the skill premium increases with the level of technology,
yet the wage earnings of individual skilled workers can fall as they potentially are displaced. We
discuss the model calibration next.

17Our formulation for θ is related to Jones and Kim (2018) in that the skill of an individual worker grows on average
over time but occasionally resets to a lower level.
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4.2 Model Calibration

Here we discuss how we fit the model to the data.

Methodology

The model has a total of 14 parameters. We choose these parameters via a mixture of calibration
and indirect inference. Specifically, we choose sl = 0.375 so that workers with only low-skill labor
inputs constitute the lowest income bin (25% of the sample), and half of the second-lowest. Since m
and φ are not separately identified, we set the learning rate m = 0.03; when choosing the grid for θ,
we assume that skilled workers human capital θ ∈ (0.03, 1). Last, we set the worker exit rate, at
δ = 2.5% which corresponds to a 40 year average working life.

To estimate the remaining 10 parameters Θ = {µ, λ, ρ, σ, φ, α, κ, ω, h, g}, we target the mean
level of the skill premium, the response of labor productivity and the labor share to changes in
technology estimated in Section 1, and the response of worker earnings growth and likelihood of
large wage declines conditional on levels of prior income, estimated in Section 3.2. Since the model
has no mechanism for delayed responses, whereas in the data the diffusion of technology likely takes
some time, we match the model responses on impact to the empirical responses over five years.
Table 8 summarizes the 14 statistics that we target.

To obtain some intuition for how the model parameters are identified, we next discuss how these
quantities help identify model parameters. In the model, the skill premium defined as the ratio of
wages for the high-skill versus the low-skill labor input equals

WH,t

WL,t
= µ

(1− µ) (1− λ)

(
Ht

Lt

)σ−1
(
λ

(
ξt
Lt

)ρ
+ (1− λ)

) ρ−σ
ρ

. (31)

Examining (31), we see that as long as technology is more complementary to high-skill than low-skill
labor inputs (ρ > σ) and we hold fixed the supply of skilled and unskilled labor H and L then the
skill premium is increasing with the level of technology ξ. Thus, just like the standard model, our
model generates an increase in the skill premium over the long run during periods when the rate of
technology rises faster than average. However, in our model the supply of high- and low-skill inputs
H and L varies in the short run, due to skill displacement (28). This process leads to drop in H/L
and thus a further increase in the skill premium in the short-run.

When mapping the model to the data, we define the skill premium as the mean ratio of earnings
of workers in the 75th vs the 25th percentile. This ratio combines information on the ratio WH/WL

and the ergodic distribution of θ. In terms of identifying model parameters, the mean level of the
skill premium thus helps identify the factor share parameters µ and λ and the elasticities ρ and σ.

35



Further, it affects the parameters driving the ergodic distribution of θ, namely ω, φ, h and α.
The labor share of output in the model can be written as

WH,t Lt +WL,tHt

Yt
=

(1− λ) (1− µ)
(
λ
(
ξt
Lt

)ρ
+ 1− λ

)σ
ρ
−1

+ µ
(
Ht
Lt

)σ
(1− µ)

(
λ
(
ξt
Lt

)ρ
+ 1− λ

)σ
ρ + µ

(
Ht
Lt

)σ (32)

The response of the labor share (32)— and output (23)—to increases in technology ξ is ambiguous
in the model. These both depend on the extent to which different tasks contribute to output (µ
and λ); technology-labor complementarity (ρ and σ) and the response of H and L to a technology
shock (which depends on h and α). What helps with identification in our case is our finding that
technology improvements are associated with declines in the labor share of output and an increase
in output per worker (see Section 1). The fact that output/productivity and the labor share respond
with opposite signs helps narrow down the set of admissible parameters quite significantly.

To identify the parameters involved in the dynamics of worker skill acquisition and displacement
in (28), we also target the heterogeneity in earnings responses to changes in technology (see
Section 3.2). Specifically, we target the mean earnings growth responses (column (2) in Table 5), and
changes in the probability of large declines in wage earnings (column (5) in Table 5). To construct
the analogue. Recall that, in the data, there is a U-shape relation in mean responses, with the
highest-paid workers and lowest-paid workers experiencing the largest earnings declines in response
to technology shocks. In terms of higher moments though, we find that the highest-paid workers
are far more likely than other groups to experience large earnings declines. In the model, whether
higher-paid workers are more exposed to technology is largely ambiguous.

To see this, we can derive the following decomposition for wage earnings growth in the model
over any horizon h:

wi,t+h − wi,t
wi,t

= wl,t
wl,t + θi,tsp,t︸ ︷︷ ︸

low skill
income share

∆hwl,t+h
wl,t︸ ︷︷ ︸

low skill
wage chg

+ θi,tsp,t
wl,t + θi,tsp,t︸ ︷︷ ︸

high skill
income share

[
sp,t+h
sp,t

· ∆hθi,t+h
θi,t︸ ︷︷ ︸
skill

displacement

+ ∆hsp,t+h
sp,t︸ ︷︷ ︸

high skill
wage chg

]
(33)

where sp,t = Wh,t −Wl,t.
As we see from the last term in brackets in (33), whether the highest-earning workers experience

larger declines depends on whether the increase in the skill premium in is sufficient to offset the
loss of worker skill θi,t due to skill displacement—see equation (28). For the high-income (i.e. θ)
workers, the primary income risk in the model comes from having human capital displaced, while
the lowest-income workers (those in the sl group with θ = 0) face income losses from changes in
wages. Improvements in technology lead to an increase in the skill price of H and a drop in the skill
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price of L because of both differences in complementarity and skill displacement—since workers
fall down the ladder following a shock, H is scarcer and L is more abundant. These effects depend
on the size of human capital losses and increases, as well as the associated skill prices following
displacement, including h, φ, ω, λ, µ, σ, and ρ.

Mapping the empirical regressions in Table 5 to the model entails two challenges: first, our
technology measure varies at the industry and occupation level whereas the model refers to a
single industry; second, our empirical specifications include occupation, industry, and time fixed
effects so the main coefficients are also identified by comparing to workers in other occupations or
industries. To narrow the gap between the model and the data, we construct the closest equivalent
to a regression coefficient in the model as follows. We first calculate a set of wage responses that
vary by income bins that match the empirical equivalents. Within each income bin, we compute
wage growth for exposed (di,t = 1) and unexposed (di,t = 0) workers in the case of a technology
shock occurring (dNt = 1) or not (dNt = 0). The equivalent of the regression coefficient in the model
is the coefficient of wage growth on the interaction between a shock occurring and the worker being
exposed, while separately controlling for exposure and shock dummies and everything interacted
with income bins.18

We calibrate the remaining 10 model parameters by minimizing the distance between the output
of the model X̂(Θ) and the data X,

Θ̂ = arg min
Θ

(
X − X̂(Θ)

)′
W
(
X − X̂(Θ)

)
. (34)

Our choice of weighting matrix W emphasizes percent deviations of the model vs the empirical
values and places relatively more weight in the aggregate moments.

Table 7 summarizes our parameter choices. Similar to Krusell et al. (2000); Eisfeldt et al. (2021),
we find that technology is a good substitute for the low-skill labor input (ρ = 0.74) whereas the
high-skill labor input is complementary to technology (σ = −0.12). Technology shocks are relatively
frequent (ω = 1.56) and sizeable (κ = 0.32). Importantly, however, the model features a modest
degree of skill displacement: workers who fall down the ladder only lose h = 6% of their existing
level of θ. That said, these losses are pervasive: the probability of skill loss conditional on a shock is
α = 32%. Further, these skill losses are transient: workers are able to acquire skills (increase θ) at
an average rate of mφ = 7.2% per year.

18When constructing these regression coefficients in the model, we use the ergodic distribution of wage growth, so
we take into account the share of exposed workers α, the frequency of technology shocks ω and the likelihood each
worker falls in a given income bin.
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Model Fit and Discussion of the Mechanism

Examining Table 8, we see that the model does a good job matching the target statistics, including
the labor share and responses of aggregate quantities to technology shocks. Specifically, the model
is able to capture the fact that output and labor productivity rise following a technology shock
whereas the labor share falls. In addition, the model is able to largely replicate both the marginal
effect of a shock on exposed workers as well as the U-shape pattern of coefficients by income rank.

Figure 11 plots the impulse responses generated by the model in response to a one-standard
deviation shock to the level of technology ξ (panel A). Panel B shows that this improvement in
technology leads to a 2.5% rise in output/productivity on impact. By contrast, Panel C shows
that the labor share declines by approximately 1.5%. This decline in the labor share is driven
by a combination of two factors. First, as we see in Panel D, the quantity of the high-skill labor
input declines by approximately 2.5% as workers’ skills are displaced. This fall is temporary, as H
gradually increases to skill acquisition. Since the wages for the high-skill task exceed the wages of
the low-skill task, the total wage bill in the economy falls. Second, Panel E shows that improvements
in technology are associated with decline in the price of the low-skill labor input (WL) which further
depresses the labor share; by contrast, even though the price of the high-skill labor input rises in
Panel F, the rise is not sufficient to cause the labor share to rise because H falls. These movements in
skill prices are driven by a combination of two forces: first, the high-skill input is complementary to
ξ whereas the low-skill input is a substitute; second, skill prices change in response to the reduction
in the effective supply of H due to skill displacement.

Figure 12 summarizes the distributional impact of technology shocks in the cross-section of
workers. Panel A focuses on differences in growth rates in response to a technology shock relative
to the no-shock counterfactual. The blue bars correspond to unexposed workers (i.e.di = 0). For
these workers, the only effect in play is changes in skill prices. Low-income workers supply only the
low-skill labor input L. Since the price WL of the low-skill input falls, these workers experience a
decline in wages. By contrast, the high-income workers supply mostly the high-skill input H; since
the price of the high-skill input WH rises, these workers experience an increase in wages. Absent
skill displacement would be the only impact on wage growth in the model—and would be similar to
the models in Krusell et al. (2000) and Eisfeldt et al. (2021). Yet, such a model would be unable to
produce the empirical patterns in Table 5.

The orange bars in Panel A of Figure 12 correspond to the wage growth of exposed (i.e. di = 1)
workers following a shock relative to the no-shock counterfactual. These workers experience the
same change in skill prices as the unexposed workers, but they are also subject to skill displacement
(loss of human capital θ). As a result, the wage growth of the high-income exposed workers is
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markedly different than the wage growth of the unexposed high-income workers: despite the fact
that skill prices WH rise, these workers experience a fall in wages due to loss of human capital θ.
Further, just like the data, their wages fall significantly more than the low-income workers, implying
that this loss in skill is significant.

Panel B Figure 12 plots the equivalent of the regression coefficient in the model, that is, the
OLS coefficient of a regression of wage growth on a shock and exposure dummy, controlling for
income. Since these slope coefficients are estimated using the ergodic distribution of wages at the
model steady state, which factor in the relative size of the different worker groups and the frequency
of technology shocks they cannot be expressed as simple functions of the coefficients in Panel A.
However, they display a similar pattern as the orange bars: improvements in technology have an
asymmetric effect on the wages of exposed workers. The workers most affected are the high-income
workers—with some mild evidence of a U-shaped response.

In brief, Figure 12 summarizes the impact of technology of wages, which is a combination of
shifts in skill prices and changes in the quantity of human capital. The combination of these effects
generate the U-shape in earnings losses we see in column (2) of Table 5. The lowest-income workers
have θ = 0, and as a consequence have wages which fall dramatically relative to a non-shock period.
Workers in the middle part of the income distribution experience some loss of human capital and
suffer from the decline in the price of low-skill labor input WL, but these losses are partly offset
from the increases in the high-skill price WL. Workers at highest income group has the farthest to
fall: these workers who are exposed to technology experience the largest wage declines of anyone
in the model due to skill displacement. By contrast, unexposed workers who stay at the top of
the ladder following a technological innovation see large wage increases due to higher WH—which
results from scarcer H and the complementarity of H and ξ.

In addition to the impulse responses to a given shock holding the model parameters fixed, we
can also study the impact of shifts in structural parameters. In Figure 13 we compute transition
paths associated with a permanent increase in ω, the rate of technological innovation and therefore
a permanent increase in the level of technology ξ. We calibrate the increase in ω so that the new
steady-state level of ξ is one-standard-deviation higher than in our calibration. As we see in the blue
line, this shift leads to a permanent increase in output and productivity, a decline in the labor share,
an increase in the skill premium, and an increase in inequality. Further, the permanent increase
in the rate of innovation also leads to a permanent decline in the quantity of the supply of the
high-skill input due to high rate of displacement. As a result, the level of output eventually starts
to drop back towards the initial steady state because H and ξ are complements. The orange line in
the same plot shows how these responses vary if we also change the rate of skill acquisition φ to
keep the steady-state level of H constant between the two steady states.
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5 Conclusion

We develop a new method for identifying the arrival of labor-displacive innovations. Our time series
indicators of worker technology exposure date are available since the mid 19th century and are
available at a high level of granularity—industry and worker occupation. Examining the type of
worker tasks most exposed to innovation, we find that while non-routine manual (physical) and
routine-manual tasks have been highly exposed throughout the last 150+ years, the innovations of
the information technology revolution in the post-1980 period saw an increased relationship with
cognitive tasks.

More importantly, we find that our technology exposure measures are consistently negatively
related to workers’ future labor market outcomes, both at the group (occupation) but also at the
individual level. Using a panel of administrative data on worker earnings, we show that the earnings
of older and less educated workers are more responsive to our technology exposure measure, which
is in line with the existing view of technology-skill complementarity. By contrast, our finding that
the earnings of more highly paid workers (relative to their peers in the same industry and same
occupation) respond more to our technology measure is somewhat at odds.

We reconcile these patterns with the standard view by allowing for skill displacement in the
standard model of technology-skill complementarity. Our calibrated model is able to quantitatively
replicate our main findings: improvements in technology are associated with increases in productivity
but a decline in the labor share; lower earnings across workers of all income groups. In the model, the
earnings of high-income workers respond more to technology improvements because these workers
have further to fall: the loss of skills following technological progress is sufficient to offset any wage
gains associated with higher skill prices.

Overall, we provide long-run evidence that the technological displacement of labor has been
a persistent phenomenon over the past century and a half. Our findings illustrate the utility of
our technology exposure indicators that can be used to study an array of questions in economics.
That said, we should emphasize that our indicators are constructed largely from the perspective of
incumbent workers and are primarily intended to capture technological substitution of existing tasks.
A likely feature of technological progress that we are missing is that it facilitates the creation of new
tasks and occupations. Building on our work, Autor, Salomons, and Seegmiller (2021) represents a
promising step along that direction.
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Figures and Tables

Figure 1: Examples of Technology Exposure: By Innovations
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Figure 2: Technological Exposure, by occupation income level
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Note: This figure plots average ηi,t for occupations over the 1980 to 2002 period by wage percentile rank. The wage
data come from the Current Population Survey Merged Outgoing Rotation Groups.
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Figure 3: Technological Exposure, composition by major occupation group
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Note: This figure plots the average of our occupation-level innovation exposure index, ηi,t, where ηi,t has been
averaged separately within eight broad occupation groups. The occupation group averages are re-scaled each year so
that the total across all groups sums to one in the given year.
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Figure 4: Technology Exposure, by task type

A. Levels
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Note: This figure plots the level and composition of our index of technological exposure by task category:

λw,t =
∑
i

ηi,t × Tw,t(i)× ωi (35)

Panel A plots the raw index λw,t and panel B plots the relative shares λw,t/
∑

w′ λw′,t Here w represents one of the
four given task categories. Tw,t is an indicator that takes a value of 1 if occupation i is in the top quintile of the
cross-sectional distribution of task scores for task category w. ηi,t is our index of technological exposure and ωi gives
the Acemoglu and Autor (2011) occupational employment shares. See main text for more details.
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Figure 5: Technology Exposure, by education requirements

A. Levels
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Note: This figure plots the level and composition of our index of technological exposure by education category:

ζs,t =
∑
i

ηi,t × Ss,t(i)× ωi,t (36)

Panel A plots the raw index ζs,t and panel B plots the relative shares ζs,t/
∑

s′ ζs′,t Here s represents either the
educational category "high school or less" or "college grad or more". Ss,t is and indicator that takes a value of 1 if
occupation i is in the top quintile of the time t cross-sectional distribution of shares of workers falling in category s.
ηi,t is our index of technological exposure and ωi,t gives occupational employment shares. See main text for more
details.
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Figure 6: Innovation: Productivity vs Labor Share
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Note: The figure plots the estimated coefficients β(k) from regressions of the form

logXj,t+k − logXj,t = α(k) + β(k)ψj,t + δ(k)Zj,t + εj,t for k = 1 . . . T years

The main independent variable ψj,t is an index of innovation in industry j in year t, constructed as follows. First, we
assign breakthrough patents to industries using the patent CPC tech class to industry crosswalk from Goldschlag et al.
(2020). Second, we only include breakthrough patents whose average similarity to the industry’s occupations (using
occupation-by-industry employment weights) are above the (unconditional) median. We scale ψj,t by US population
and normalize to unit standard deviation. Controls Zj,t include industry employment shares, year fixed effects and
lagged 5-year growth rate of the dependent variable. Standard errors are clustered by industry, and corresponding
t-stats are shown in parentheses.
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Figure 7: Employment and Technology Exposure (long-run: 1850–present)

1850 1860 1870 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990
−5

−4

−3

−2

−1

0

1

2

Census Year (t)

Em
pl
oy
m
en
t
C
ha

ng
e
(%

)

Note: Figure shows the slope coefficients on annual regressions of 20-Year employment share growth on our technology
exposure ηi,t, using Census Years from 1850 to 1990. Specifically, we plot the β coefficients from

1
k

(
log Yj,t+k − log Yj,t

)
= αt + βtηi,t + λt + εi,t

Here Yi,t is the occupation’s share in total non-farm employment. Standard errors are clustered by occupation and
shaded area represents the corresponding 90% confidence intervals for βτ . Growth rates are expressed in annualized
percentage terms and ηi,t is standardized.

51



Figure 8: Employment, wage earnings and technology exposure (recent period: 1980–present)

A. Employment Growth

0 2 4 6 8 10 12 14 16 18 20
−2

−1.5

−1

−0.5

0

Years (h)

Em
pl
oy
m
en
t
C
ha

ng
e
(%

)

B. Wage Growth

0 2 4 6 8 10 12 14 16 18 20
−0.5

−0.4

−0.3

−0.2

−0.1

0

Years (h)

W
ag

e
Ea

rn
in
gs

C
ha

ng
e
(%

)

Note: The Figures above plot coefficients from panel regressions of annualized wage and income growth rates over
different time horizons on occupation innovation exposures:

yi,t+k − yi,t = α+ βηi,t + δXi,t + εi,t

Controls Xi,t–includes three one-year lags of dependent variable, and time fixed effects. Dependent variable is expressed
in annualized percentage terms and ηi,t is standardized. Figures plot 90% confidence interval for each time horizon.
Data come from the CPS Merged Outgoing Rotation Groups (MORG) and cover the 1985–2018 period.
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Figure 9: Employment share over the business cycle (Technology Exposure vs RTI)

A. Technology Exposure (ηi,t)
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B. Routine Task Intensity (RTI)
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Note: The above figure plots aggregate employment shares over time for occupations that were in the top quintiles of
innovation exposure (ηi,t) and routine-task intensity in the year 1985. Vertical shaded bars represent NBER recession
dates. Data source: CPS Merged Outgoing Rotation Groups extracts obtained from the Center For Economic Policy
Research website.
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Figure 10: Example: Order Clerks versus Personnel and Library Clerks
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Figure 11: Model: Impulse Responses
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C. Labor Share D. High-skill labor input H
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E. Wage for low-skill input (Wl) F. Wage for high-skill input (Wh)
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Note: This figure shows the impulse responses of key model quantities following a one-standard deviation technology
shock evaluated at the steady state of the model.
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Figure 12: Model: Innovation and Worker Earnings

A. Differences in Post-Shock Wage Growth

� Unexposed Workers � Exposed Workers

[0,25] [25,50] [50,75] [75,95] [95,100]
−2

−1

0

1

2

3

4

Income Bin

D
iff
er
en

ce
in

W
ag
e
G
ro
w
th

(%
)

B. Regression Coefficients for Post-Shock Wage Growth

� Model � Data
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Note: Panel A shows raw differences between wage growth during a shock period and wage growth if there had not
been a shock for workers who are exposed to the shock, workers who are not exposed to the shock. Panel B shows the
associated regression coefficients, which represent the marginal effects of a shock on wage growth given exposure. The
left part of the figure shows the results in our baseline calibration. The right part of the figure compares to the case
where there is no displacement of human capital.
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Figure 13: The race between education and technology

A. Technology (ξ) B. High-skill labor input (H)
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C. Labor Share D. Output
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E. Top 5% Income Share F. Skill Premium (wh − wl)
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Transition paths to new SS: � Higher ω � Higher ω and φ

Note: Figure computes the transition paths from the old to the new steady state for two permanent parameter shifts:
1) the blue line plots a permanent increase in the frequency of technological innovation ω, calibrated so that the level
of technology ξ is permanently higher by one standard deviation relative to the old steady state (panel A); and 2) the
orange line plots the transition paths associated with the same shift in ω but also with an increase in the rate of new
skill acquisition φ such that the total supply of the high-skill labor input remains the same as the old steady state
(panel B). Panel C plots the labor share of output; panel D plots total output/productivity; panel E plots income
inequality, defined as the top 5% income share in the model; and panel F plots the skill premium.
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Table 1: Technology And Employment Over the Long Run (1850–present)

A. Occupation-level Employment B. Industry X Occupation level employment

10 Years 20 Years 10 Years 20 Years 10 Years 20 Years 10 Years 20 Years

Technology Exposure, ηi,t -0.43∗∗∗ -0.75∗∗∗ -0.33∗∗∗ -0.66∗∗∗ -0.37∗∗∗ -0.76∗∗∗ -0.38∗∗∗ -0.86∗∗∗

(-4.68) (-6.30) (-4.17) (-6.33) (-2.76) (-3.69) (-2.83) (-3.92)

Observations 2,865 2,574 2,492 2,208 102,400 81,009 72,451 54,662
R2 (Within) 0.016 0.043 0.067 0.078 0.003 0.013 0.004 0.018
Controls
Time FE Y Y Y Y
Industry X Time FE Y Y Y Y
Lagged Dependent Variable Y Y Y Y

Note: The table above reports results from regressions of the form

1
k

(
log Yi,t+k − log Yi,t

)
= α0 + αt + β(k)ηi,t + ρ (log Yi,t − log Yi,t−k) + εi,t

for k = 10, 20 years for Census years spanning from 1850-2010. Here Yi,t is the occupation’s share in total non-farm employment. ηi,t is standardized and growth rates
are in annualized percentage terms. Standard errors are clustered by occupation and corresponding t-stats are shown in parentheses. Observations are weighted by
occupation employment share at time t. Census year 1870 does not show up in the first column of the 20-year subsample regressions because the 1890 Census records
no longer exist.
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Table 2: Summary Statistics: Worker-Level Data

Variable Mean SD 5% 25% Median 75% 95%

W2-Earnings 100,100 282,400 18,060 47,100 76,010 119,600 233,900
Age 41 7 29 34 41 47 53
Age: Lowest 25% Earners 39 7 29 33 38 44 51
Age: Top 5% Earners 44 7 31 39 46 50 54
Earnings growth, 3-years -0.053 0.573 -0.890 -0.124 0.015 0.143 0.540
Earnings growth, 5-years -0.063 0.592 -0.968 -0.158 0.011 0.156 0.574
Earnings growth, 10 -years -0.073 0.639 -1.098 -0.215 0.005 0.190 0.666

Note: The table reports summary statistics for our wage earnings data from the Census-CPS sample, which covers
the 1988 to 2016 period. W2-Earnings are reported in terms of 2015 dollars.
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Table 3: Worker Earnings and Technology Exposure

(1) (2)

A. Cond. Mean: E[g], by Horizon
3 years -1.21 -1.12

(-6.32) (-5.65)
5 years -1.55 -1.30

(-6.84) (-4.77)
10 years -1.43 -1.24

(-4.96) (-3.14)

B. Risk: Absolute Income Growth E[|g|]
3 years 0.73 0.25

(3.03) (1.59)
5 years 0.76 0.37

(2.40) (1.78)
10 years 0.38 0.47

(0.95) (1.68)

C. Skewness: Prob. Large Income Decline p(g < p10)
3 years 0.56 0.38

(6.31) (4.18)
5 years 0.58 0.41

(4.76) (3.31)
10 years 0.37 0.27

(2.09) (1.48)
Controls:
Industry FE Y
Occupation FE Y
Year FE Y
Industry × Year FE Y
Occupation × Year FE Y

Note: Panel A shows the estimated slope coefficients β(h) (times 100) from equation (21) in the main text for
horizons h of 3,5, and 10 years. Panels B and C focus on the 5-year horizon. Panel B shows the slope coefficients of a
variant of the above specification where we replace the dependent variable gi,t:t+h with its absolute value |gi,t:t+h|
to capture the response of second moments to changes in technology exposure ηi,t. Similarly, Panel C replaces the
dependent variable with a dummy that takes the value of one if gi,t:t+h lies in the bottom 10-th percentile; this
specification allows us to capture increases in negative skewness in response to an increase in ηi,t. We report t-statistics
(in parentheses) using standard errors clustered at the industry (NAICS 4-digit) level. All specifications include
industry times year and occupation times year fixed effects. We normalize ηi,t to unit standard deviation. The bottom
panel shows the p-values associated with the hypotheses that the coefficients are equal across the reported subgroups.
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Table 4: Worker Earnings and Technology Exposure, by Education

Education

(1) (2) (3) (4) (5)

Cond. Mean St. Dev Skew
E[g] E[|g|] p(g < p10)

3-year 5-year 10-year 5-year 5-year

College -0.91 -1.14 -1.21 0.49 0.35
(-3.33) (-3.34) (-2.49) (2.65) (2.57)

No College -1.30 -1.50 -1.76 0.39 0.48
(-5.58) (-5.18) (-4.47) (1.51) (4.33)

Coeff. Differences p-values

College = No College 0.043 0.110 0.052 0.537 0.071

Note: Columns (1) to (3) show the estimated slope coefficients (times 100) from equation (21) in the main text: the
dependent variable is worker earnings growth over horizons of 3,5, and 10 years; the main independent variable of
interest is a worker’s technology exposure ηi,t. The slope coefficient β(h) is allowed to vary with the worker’s education.
Columns (1) to (3) correspond to horizons of 3,5, and 10 years. Columns (4) and (5) focus on the 5-year horizon.
Column (4) shows the slope coefficients of a variant of the above specification where we replace the dependent variable
gi,t:t+h with its absolute value |gi,t:t+h| to capture the response of second moments to changes in technology exposure
ηi,t. Similarly, Column (5) replaces the dependent variable with a dummy that takes the value of one if gi,t:t+h lies in
the bottom 10-th percentile; this specification allows us to capture increases in negative skewness in response to an
increase in ηi,t. We report t-statistics (in parentheses) using standard errors clustered at the industry (NAICS 4-digit)
level. All specifications include industry times year and occupation times year fixed effects.We normalize ηi,t to unit
standard deviation. The bottom panel shows the p-values associated with the hypotheses that the coefficients are
equal across the reported subgroups.

61



Table 5: Worker Earnings and Technology Exposure, by Prior Income

Income Percentile

(1) (2) (3) (4) (5)

Cond. Mean St. Dev Skew
E[g] E[|g|] p(g < p10)

3-year 5-year 10-year 5-year 5-year

0 to 25-th -1.24 -1.49 -1.85 -0.26 0.29
(-5.76) (-5.28) (-4.70) (-1.07) (2.23)

25 to 50-th -0.85 -1.01 -0.96 0.10 0.26
(-4.14) (-3.57) (-2.04) (0.40) (1.45)

50 to 75-th -1.01 -1.18 -1.01 0.48 0.39
(-3.51) (-3.07) (-1.87) (1.65) (2.84)

75 to 95-th -1.05 -1.17 -0.81 0.76 0.39
(-4.12) (-3.45) (-1.64) (3.25) (2.76)

95 to 100-th -2.24 -2.47 -2.28 2.01 1.26
(-6.11) (-4.75) (-3.83) (5.78) (5.50)

Coeff. Differences p-values

[95-100] = [25-95] 0.000 0.000 0.002 0.000 0.000
[0-25] = [25-95] 0.610 0.630 0.331 0.175 0.853

[95-100] = [0-25] 0.019 0.092 0.498 0.000 0.000

Note: Columns (1) to (3) show the estimated slope coefficients (times 100) from equation (21) in the main text: the
dependent variable is worker earnings growth over horizons of 3,5, and 10 years; the main independent variable of
interest is a worker’s technology exposure ηi,t. The slope coefficient β(h) is allowed to vary with the worker’s prior
income rank. Columns (1) to (3) correspond to horizons of 3,5, and 10 years. Columns (4) and (5) focus on the 5-year
horizon. Column (4) shows the slope coefficients of a variant of the above specification where we replace the dependent
variable gi,t:t+h with its absolute value |gi,t:t+h| to capture the response of second moments to changes in technology
exposure ηi,t. Similarly, Column (5) replaces the dependent variable with a dummy that takes the value of one if
gi,t:t+h lies in the bottom 10-th percentile; this specification allows us to capture increases in negative skewness in
response to an increase in ηi,t. We report t-statistics (in parentheses) using standard errors clustered at the industry
(NAICS 4-digit) level. All specifications include industry times year and occupation times year fixed effects. We
normalize ηi,t to unit standard deviation. The bottom panel shows the p-values associated with the hypotheses that
the coefficients are equal across the reported subgroups.
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Table 6: Worker Earnings and Technology Exposure, by Age

Worker Age

(1) (2) (3) (4) (5)

Cond. Mean St. Dev Skew
E[g] E[|g|] p(g < p10)

3-year 5-year 10-year 5-year 5-year

25–35 years -0.39 -0.64 -0.92 0.38 0.18
(-1.86) (-2.55) (-2.42) (1.84) (1.50)

35–45 years -0.86 -1.04 -1.37 0.05 0.23
(-5.24) (-5.08) (-3.63) (0.37) (2.55)

45–55 years -1.95 -2.25 -2.51 1.13 0.88
(-3.72) (-3.55) (-3.02) (2.5) (3.36)

Coeff. Differences p-values

45–55 = 25–35 0.001 0.002 0.006 0.051 0.001
45–55 = 35–45 0.015 0.020 0.044 0.010 0.011

Note: Columns (1) to (3) show the estimated slope coefficients (times 100) from equation (21) in the main text: the
dependent variable is worker earnings growth over horizons of 3,5, and 10 years; the main independent variable of
interest is a worker’s technology exposure ηi,t. The slope coefficient β(h) is allowed to vary with the worker’s age.
Columns (1) to (3) correspond to horizons of 3,5, and 10 years. Columns (4) and (5) focus on the 5-year horizon.
Column (4) shows the slope coefficients of a variant of the above specification where we replace the dependent variable
gi,t:t+h with its absolute value |gi,t:t+h| to capture the response of second moments to changes in technology exposure
ηi,t. Similarly, Column (5) replaces the dependent variable with a dummy that takes the value of one if gi,t:t+h lies in
the bottom 10-th percentile; this specification allows us to capture increases in negative skewness in response to an
increase in ηi,t. We report t-statistics (in parentheses) using standard errors clustered at the industry (NAICS 4-digit)
level. All specifications include industry times year and occupation times year fixed effects.We normalize ηi,t to unit
standard deviation. The bottom panel shows the p-values associated with the hypotheses that the coefficients are
equal across the reported subgroups.

63



Table 7: Model Parameters

Description Parameter Value

Share of workers who do not move up the ladder sl 0.375
Minimum level of skill θ 0.03
Probability of worker exit δ 0.025
Amount of skills acquired m 0.03
CES parameter in inner nest (technology ξ and low-skill labor L) ρ 0.74

Share of technology in inner nest λ 0.27

CES parameter in outer nest (high-skill labor H and ξ/L composite) σ -0.12

Share of high-skill labor in outer nest µ 0.17

Size of technology improvement κ 0.31

Arrival rate of technology shocks ω 1.56

Share of exposed workers α 0.32

Human capital loss percentage conditional on fall h 0.06
Rate of depreciation of technology g 0.12
Likelihood of worker skill acquisition φ 2.40

Note: Table reports the parameter used to calibrate the model. The first four parameters are calibrated a priori;
the latter 10 parameters are chosen to fit the statistics reported in Table 8.
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Table 8: Model Fit

Statistic Data Model

Labor share, average 0.66 0.59

Labor share, response to ξ -1.29 -1.48

Skill premium (p75 / p25 ratio), average 2.45 1.68

Labor productivity, response to ξ 2.81 2.31

Worker earnings growth response to ξ
0 to 25-th percentile -1.49 -1.13
25 to 50-th percentile -1.01 -1.06
50 to 75-th percentile -1.18 -1.72
75 to 95-th percentile -1.17 -2.00
95 to 100-th percentile -2.47 -2.45

Likelihood of large wage declines in response to ξ
0 to 25-th percentile 0.29 0.51
25 to 50-th percentile 0.26 0.51
50 to 75-th percentile 0.39 0.51
75 to 95-th percentile 0.39 0.51
95 to 100-th percentile 1.26 1.40

Note: Table reports the fit of the model to the statistics that we target. The parameters used in our calibration are
listed in Table 8.
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Table 9: Technology and Labor Market Outcomes: Comparison to Other Measures

A. Employment

(1) (2) (3) (4) (5)

Technology Exposure ηi,1980 -0.79∗∗∗ -0.87∗∗∗ -0.74∗∗∗ -0.74∗∗∗ -0.82∗∗∗

(-5.68) (-6.25) (-5.26) (-5.12) (-5.99)

Routine Task Intensity (RTI) -0.058 0.011
(-0.50) (0.08)

Offshorability -0.15∗∗ -0.20∗∗

(-2.04) (-2.50)

Robot Exposure -0.66∗∗ -0.93∗∗

(-2.21) (-2.21)

Software Exposure -0.36 0.069
(-1.34) (0.21)

B. Wages

(1) (2) (3) (4) (5)

Technology Exposure ηi,j,1980 -0.082∗∗∗ -0.064∗∗∗ -0.071∗∗∗ -0.100∗∗∗ -0.078∗∗∗

(-4.11) (-3.11) (-3.87) (-5.37) (-4.21)

Routine Task Intensity (RTI) -0.066∗ -0.059∗

(-1.97) (-1.70)

Offshorability 0.0042 -0.0026
(0.17) (-0.09)

Robot Exposure -0.13∗ -0.27∗∗∗

(-1.86) (-2.76)

Software Exposure 0.13∗∗ 0.24∗∗∗

(2.10) (4.73)

Observations 17536 16959 17448 17448 16959

Note: This table shows results from estimating

1
k

(
log Yi,j,t+k − log Yi,j,t

)
= α+ αj + βηi,1980 + δXi + εi,j

Here i indexes occupations and j indexes industries; we report results for k = 32 years using Deming (2017) data from
the 1980 Census and the 2012 ACS. The dependent variables are employment (Panel A) or average wages (Panel B).
All specifications include industry fixed effects and controls for occupation employment share in 1980, occupation
log wage in 1980, three categorical indicators for the occupation’s average education level in 1980. We additionally
include the routine-task intensity and the measure of occupation-level offshorability from Autor and Dorn (2013) and
the measure of exposure to robots or software from Webb (2019) depending on the specification. Observations are
weighted by employment share in 1980.
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A Appendix

A.1 Converting Patent Text for Numerical Analysis

Here, we briefly overview our conversion of unstructured patent text data into a numerical format
suitable for statistical analysis. We obtain text data for measuring patent/job task similarity
from two sources. Job task descriptions come from the revised 4th edition of the Dictionary of
Occupation Titles (DOT) database. We use the patent text data parsed from the USPTO patent
search website in Kelly et al. (2020), which includes all US patents beginning in 1976, comprising
patent numbers 3,930,271 through 9,113,586, as well as patent text data obtained from Google
patents for pre-1976 patents. Our analysis of the patent text combines the claims, abstract, and
description section into one patent-level corpus for each patent. Since the DOT has a very wide
range of occupations (with over 13,000 specific occupation descriptions) we first crosswalk the DOT
occupations to the considerably coarser and yet still detailed set of 6-digit occupations in the 2010
edition of O*NET. We then combine all tasks for a given occupation at the 2010 O*NET 6-digit
level into one occupation-level corpus. The process for cleaning and preparing the text files for
numerical representation follows the steps outlined below.

We first clean out all non-alphabetic characters from the patent and task text, including removing
all punctuation and numerical characters. We then convert all text to lowercase. At this stage each
patent and occupation-level task text are represented by a single string of words separated by spaces.
To convert each patent/occupation into a list of associated words we apply a word tokenizer that
separates the text into lists of word tokens which are identified by whitespace in between alphabetic
characters. Since most words carry little semantic information, we filter the set of tokens by first
removing all “stop words”– which include prepositions, pronouns, and other common words carrying
little content–from the union of several frequently used stop words lists.

Stop words come from the following sources:

• https://pypi.python.org/pypi/stop-words

• https://dev.mysql.com/doc/refman/5.1/en/fulltext-stopwords.html

• http://www.lextek.com/manuals/onix/stopwords1.html

• http://www.lextek.com/manuals/onix/stopwords2.html

• https://msdn.microsoft.com/zh-cn/library/bb164590

• http://www.ranks.nl/stopwords

• http://www.text-analytics101.com/2014/10/all-about-stop-words-for-text-mining.

html

• http://www.webconfs.com/stop-words.php
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• http://www.nltk.org/book/ch02.html (NLTK stop words list)

We also add to the list of stop words the following terms that are ubiquitous in the patent text
but don’t provide information regarding the content and purpose of the patent: abstract, claim,
claims, claimed, claiming, present, invention, united, states, patent, description, and background.
The final stop word list contains 1337 unique terms that are filtered out.

Even after removing stop words, we expect much of the remaining text to offer little information
regarding the purpose and use of a given patent or the core job functions expected to be performed
by workers in a given occupation. In order to focus on the parts of the document most likely to
contain relevant information, we retain descriptive and action words–i.e. nouns and verbs–and
remove all other tokens. We do this using the part-of-speech tagger from the NLTK Python library.
Finally, we lemmatize all remaining nouns and verbs, which is to convert them to a common root
form. This converts all nouns to their singular form and verbs to their present tense. We use the
NLTK WordNet Lemmatizer to accomplish this task. After these steps are completed, we have a
set of cleaned lists of tokens for each patent and each occupation’s tasks that we can then use to
compute pairwise similarity scores.

A.2 Description of Word Embedding Vectors

To appreciate how our metric differs from the standard bag-of words approach it is useful to briefly
examine how word embeddings are computed in Pennington et al. (2014). Denote the matrix X as
a V × V matrix of word co-occurence counts obtained over a set of training documents, where V is
the number of words in the vocabulary. Then Xi,j tabulates the number of times word j appears in
the context of the word i.19 Denote Xi = ∑

kXi,k as the number of times any word appears in the
context of word i, and the probability of word j occuring in the context of word i is Pi,j ≡ Xi,j/Xi.
The goal of the word embedding approach is to construct a mapping F (·) from some d-dimensional
vectors xi, xj , and x̃k such that

F (xi, xj , x̃k) = Pi,k
Pj,k

(A.1)

Imposing some conditions on the mapping F (·), they show that a natural choice for modeling Pi,k
in (A.1) is

xTi x̃k = log(Xi,k)− log(Xi) (A.2)

Since the mapping should be symmetric for i and k they add “bias terms” (essentially i and k fixed
effects) which gives

xTi x̃k + bi + bk = log(Xi,k) (A.3)
19Pennington et al. (2014) use a symmetric 10 word window to determine “context” and weight down occurences

that occur further away from the word (one word away receives weight 1, two words away receives weight 1/2, etc.).
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Summing over squared errors for all pairwise combinations of terms yields the weighted least squares
objective

Minxi,x̃k,bi,bk
V∑
i=1

V∑
j=1

f(Xi,j)
(
xTi x̃k + bi + bk − log(Xi,j)

)2
(A.4)

Here the observation-specific weighting function f(Xi,j) equals zero for Xi,j = 0 so that the log
is well defined, and is constructed to avoid overweighting rare occurences or extremely frequent
occurences. The objective (A.4) is a highly-overidentified least squares minimization problem.
Since the solution is not unique, the model is trained by randomly instantiating xi and x̃k and
performing gradient descent for a pre-specified number of iterations, yielding d-dimensional vector
representations of a given word. Here d is a hyper-parameter; Pennington et al. (2014) find that
d = 300 works well on word analogy tasks.

Since (A.4) is symmetric it yields two vectors for word i, xi and x̃i, so the final word vector is
taken as the average of the two. The ultimate output is a dense 300-dimensional vector for each
word i that has been estimated from co-occurence probabilities and occupies a position in a word
vector space such that the pairwise distances between words (i.e. using a metric like the cosine
similarity) are related to the probability that the words occur within the context of one another
and within the context of other similar words. Note that the basis for this word vector space is
arbitrary and has no meaning; distances between word embeddings are only well-defined in relation
to one another and a different training instance of the same data would yield different word vectors
but very similar pairwise distances between word vectors.

Our method for backing out a geometric representation of the “meaning” of a document in
(7) is to construct a weighted average of the meaning of all words in the document. Thus our
vector representation of documents retains the 300-dimensional structure of the individual word
constituents; these vectors are much denser and smaller than the very large and sparse document
vectors in the standard bag of words methodology. In brief, there are two key characteristics that
differentiate our approach relative to bag of words techniques. First, Xi is no longer a sparse
vector like Vi. Moreover, because of the way word vectors are estimated, our method allows vectors
containing similar words to be “close” to one another. Thus, relative to the bag of words approach
our method: (1) constitutes a large dimensionality reduction; and, (2) can incorporate a notion of
synonyms/distances between word meanings.

Armed with a vector representation of the document that accounts for synonyms, we next use
the cosine similarity to measure the similarity between patent i and occupation j:

Simi,j = Xi

||Xi||
· Xj

||Xj ||
(A.5)

This is the same distance metric as the bag of words approach, except now Xi and Xj are dense
vectors carrying a geometric interpretation akin to a weighted average of the semantic meaning of
all nouns and verbs in the respective documents.

To illustrate the difference between our approach and the standard bag of words, consider the
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following example of two documents, with the first document containing the words ‘dog’ and ‘cat’
and the other containing the words ‘puppy’ and ‘kitten’. Even though the two documents carry
essentially the same meaning, the bag of words approach will conclude that they are distinct: the
representation of the two documents is

V1 = [1, 1, 0, 0], and V2 = [0, 0, 1, 1] (A.6)

which implies that the two documents are orthogonal, ρ1,2 = 0. Here, the TF-IDF weights in our
simple example satisfy TF1,dog = 1/2 and IDFdog = log(2), with similar logic applying to “cat”;
this proceeds analogously for document 2 containing “puppy” and “kitten”.

By contrast, in the word embeddings approach, these two documents are now represented as

X1 = (1/2)× log(2)xdog + (1/2)× log(2)xcat (A.7)

and similarly for X2. Here xdog, xcat would have been trained using the Pennington et al. (2014)
method described above on a very large outside set of documents. Hence, in this case since word
vectors are estimated such that xdog ≈ xpuppy and xcat ≈ xkitten, we now have Sim1,2 ≈ 0.81 using
the word vectors estimated by Pennington et al. (2014). A weighted average word embedding
approach has been shown in the natural language processing literature to achieve good performance
on standard benchmark tests for evaluating document similarity metrics relative to alternative
methods that are much more costly to compute (see, e.g. Arora, Liang, and Ma, 2017). A relative
disadvantage is that it ignores word ordering—which also applies to the more standard ‘bag of
words’ approach for representing documents as vectors. However, since we have dropped all stop
words and words that are not either a noun or a verb, retaining word ordering in our setting is far
less relevant.

Last, our methodology bears some similarities to recent work by Webb (2019), who also analyzes
the similarity between a patent and O*NET job tasks. Webb (2019) focuses on similarity in
verb-object pairs in the title and the abstract of patents with verb-object pairs in the job task
descriptions and restricts his attention to patents identified as being related to robots, AI, or
software. He uses word hierarchies obtained from WordNet to determine similarity in verb-object
pairings. By contrast, we infer document similarity by using geometric representations of word
meanings (GloVe) that have been estimated directly from word co-occurence counts. In addition to
employing a different methodology, we also have a broader focus: we compute occupation-patent
distance measures for all occupations and the entire set of USPTO patents since 1836. Furthermore,
we use not only the abstract but the entirety of the patent document—which includes the abstract,
claims, and the detailed description of the patented invention.
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A.3 Constructing the Industry Innovation Measure

For each breakthrough patent p we assign it to an industry using probabilistic patent CPC tech class
to NAICS crosswalks constructed by Goldschlag et al. (2020). The Goldschlag et al. (2020) crosswalk
assigns probabilities that patents from a given technology class originated from a particular NAICS
industry for different levels of NAICS aggregation. The NBER manufacturing database reports data
the 6-digit NAICS code level, and so we use the Goldschlag et al. (2020) 6-digit NAICS to 3-digit
CPC probabilistic crosswalk. We then aggregate the data to the 4-digit NAICS level to parallel the
level of industry classification we use in our analysis in 3.2 of the main text.

Label the set of breakthrough patents issued in year t by Γt; αj,p the probability of breakthrough
patent p being issued to industry j, and κt the US population in year t. We then define the
industry-level breakthrough patent index (including only patents with high average textual similarity
to the industry workforce) by

ψj,t = 1
κt

∑
p∈Γt

αj,p) (A.8)

A.4 Census public-use data

We gather Census data from IPUMS and compute aggregate employment shares for occupations in
Census years spanning 1850-2010. We use the 1950 Census occupation definition for pre-1950 Census
years since the more updated 1990 Census classification scheme is only available in post-1950 Census
years. We make use of the 1990 Census occupation classifications for the years they are available.
We then crosswalk Census occupations to the David Dorn occ1990dd classification scheme using the
crosswalk files provided on his website and aggregate our measure ηi,t to the occ1990dd-level by
averaging across 6-digit SOC codes within an occ1990dd code. This results in a Census-year by
occ1990dd panel of occupation employment shares. Census records for the year 1890 were destroyed
in a fire, and so the employment growth observations for the 20-year horizon in 1870 or for the
10-year horizon in 1880 are not available.

For the post-1980 results, we use the Current Population Survey Merged Outgoing Rotation
Groups (MORG). We obtain the cleaned versions of MORG extracts provided by the Center for
Economic Policy Research (CEPR). We use the “wage3” variable that combines the usual hourly
earnings for hourly workers and non-hourly workers, which adjusts for top-coding using a lognormal
imputation and is constructed to match the NBER’s recommendation for the most consistent
hourly wage series from 1979 to the present. Using these data we construct a time series of wage
and employment growth for occupations at the occ1990dd level. Because occ1990dd cannot be
crosswalked to a balanced panel of occupations using the Census 1970 occupation codes, we start our
analysis in the post-1982 time period when these extracts began using the 1980 Census occupation
classification scheme.
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A.5 Census-CPS administrative data

We use a random sample of individual workers tracked by the Current Population Survey (CPS)
and their associated Detailed Earnings Records from the Census—which contains their W2 tax
income. We limit the sample to individuals who are older than 25 and younger than 55 years old.

The CPS includes information on demographic information such as age and gender, but more
importantly occupation at the time of the interview. We assign workers to occupations based on
their response to the CPS survey (CPS “occ” variable). We construct a crosswalk between the yearly
CPS occupations codes and the occ1990dd classification scheme and assign all CPS occupations
their corresponding occ1990dd code. We assign this occupation to the worker for the next 5 years,
thus effectively dropping observations where the CPS interview date is older than 5 years—so that
the occupation information is relatively recent.

We merge the individual worker records from the Census-CPS matched sample to patent data at
the industry (NAICS 4) level. Specifically, we identify the industry of where the patent origination
by relying on the Census SSEL patent–assignee database, which provides a corresponding SSEL
firm identifier (“firmid"), which we then use to obtain the firms’ 4-digit NAICS code. In particular,
we use two SSEL patent–assignee crosswalks: the newer Business Dynamics Statistics of Patenting
Firms database (BDS-PF) and an older patent-SSL crosswalk created by Kerr and Fu (2008). The
BDS-PF links are available starting with the 2000 SSL. We use the BDS-PF firmid-patent links
for any patents for which it is available. Otherwise we rely on the links from Kerr and Fu (2008)
created from the 1999 SSL. In cases where a firmid matches to multiple NAICS codes we apply
the 4-digit NAICS code of highest employment. We drop any industry-year observations with no
patents filed in a given year.

To allow the effects to vary with prior income, we assign workers into five groups based on
their average income over the last three years (the last term in (18)) compared to workers in the
same occupation and NAICS4 industry. These groups are defined based on the following percentiles
of prior income [0%, 25%), [25%, 50%), [50%, 75%), [75%, 95%), [95%, 100%] calculated within
industry–occupation cells. In the (uncommon) case when NAICS4 industries have cells which
are too small to rank, we broaden the industry definition from 4 digit NAICS to 2 digit NAICS.
Subsequently, any Industry–Occupation cells with fewer than 10 individuals are dropped.

A.6 Constructing a Statistical Displacement Factor

To construct our predictor we use a method proposed by Cong et al. (2019), which is well-suited to
prediction exercises using large-scale textual data. Our adaptation of their method for the task of
predicting occupation outcomes can be summarized in the following steps. Let the number of patent
documents be Np (where we restrict just to the set of breakthrough patents from Kelly et al. (2020)
as described in section 2), the number of occupation task descriptions be No, and the number of
words in the vocabulary formed from the union of all patent and occupation documents be Nw:

1. Perform approximate nearest neighbor search using a locality-sensitive hashing routine (LSH)
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on vector representations of word meanings to form K clusters (“topics”) of related words.
Label the kth cluster of words Ck.

2. Create a Np × Nw matrix of breakthrough patent documents by word counts weighted by
term-frequency inverse document frequency (TF-IDF), computed over all patents (i.e. TF-IDF
is computed also including non-breakthrough patents). Call this matrix A. Loop over each
word cluster Ck from step 1 for k = 1, . . . ,K, and extract the submatrix of A formed by taking
the columns in A corresponding to the words contained in cluster Ck. Call this submatrix Ak.
Perform a singular-value decomposition of Ak and take its top singular value vk (in absolute
value) and corresponding top right singular vector Vk. Then take the Np×1 vector Pk = |Akvk|

v′
k
vk

to be the loadings of each patent document on topic/word cluster k. Retain only the clusters
Ck which rank in the top 500 based on their top absolute singular values.

3. Perform step 2 for all occupations, except only for the top 500 clusters that were retained.
Call the resulting No × 1 vector of occupation loadings Ok. Denote the set breakthrough
of patents issued in year t by Γ̂t. Let Ok,i represent the ith element of Ok and Pk,j the jth
element of Pk, the vector of patent loadings on cluster k. Then occupation i’s exposure to the
kth topic in year t is given by

ψi,k,t = Ok,i
κt

∑
j∈Γ̂t

Pk,j (A.9)

As before we only sum over breakthrough patents and normalize by U.S. population in year t
(denoted by κt). This yields an occupation’s exposure in each year to the 500 topics which are found
to be the most important among the breakthrough patents. Though equation A.9 looks a bit like
our construction of ηi,t in equation 12, it differs in that we no longer directly use word vectors to
compute similarities. Instead, the Cong et al. (2019) technique only uses the word vectors to give
an educated guess on the topics contained in the set of documents. Thus occcupations are similar
to a given topic when they contain words that are also found in that topic.

We focus on the period of time covered by our CPS merged outgoing rotation group sample
(1985-2018) used in the employment regressions in Figure 8. This is for two reasons: first, this is the
period where our employment and wage data coverage is most comprehensive, with a yearly time
series and relatively stable occupation classifications. Second, the task composition of innovations
has begun to change in this period of time relative to all previous innovation waves. In particular,
cognitive skills have started to become more related to innovations, and this has been driven by the
rising importance of information technology and electronics patents, which was not the case prior to
the late 20th century. If skill-biased technological change has complemented the skillset of cognitive
occupations, then innovations related to these occupations may be complementary to rather than a
substitute for their skills. Thus if our measure mixes these two channels it is particularly likely to
occur during this period of time.

Steps 1 and 2 above simply group documents into topics of related terms, compute how related a
given topic is to each individual document, and provide an estimate of how important each topic is
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to the overall set of documents. Justification for the use of LSH clustering of word vectors to obtain
topics and the singular value decomposition to infer topic importance/document topic loadings are
discussed at length in Cong et al. (2019), to which we refer the interested reader for further details.
For our purposes it suffices that by performing steps 1 through 3 we are able to obtain a panel of
500 predictors at the occupation-by-year level and which represent exposures to topics of words
which are particularly relevant to patents.

In brief, this approach can be summarized as follows. We first extract the 500 most important
common factors (topics) from the text of breakthrough patents using the approach of Cong et al.
(2019) and the vector representations of word embedings discussed in Section 2. We then use
these 500 textual factors to form a single predictor that is optimized to predict occupation declines
in-sample. To do so, we examine the univariate performance of each factor in predicting employment
declines, and then form a linear combination (the first principal component) of the predictors that
are statistically significant negative predictors at the 5%. We also construct a labor-enhancing
factor using the converse exercise.

Appendix Table A.7 summarizes our findings. By design, both factors predict employment with
the correct sign in-sample. More importantly, both of these factors predict wage growth with the
same sign, despite the fact that they were not designed to do so and wage growth is not highly
correlated with employment growth. That said, the displacement factor (the factor calibrated for
employment declines) is a much stronger predictor of both employment and wage growth than its
counterpart designed to predict positive employment growth.

In terms of magnitudes, the employment and wage declines predicted by this statistical displace-
ment factor are comparable to our baseline measure—that is, 1.25% vs 1.12% employment declines
at the 10-year horizon and 0.25% vs 0.20% decline in wage earnings). The correlation between our
baseline measure ηi,t and the statistical predictor constructed to represent exposure to labor-saving
technologies is approximately 73 percent. By contrast, the correlation with the factor calibrated to
predict employment increases is negative at -11 percent.

A.7 Model Appendix

The model we use consider a continuum of workers, with a state parameter θ on the [0, 1] interval,
corresponding to their ability to produce H. Share sh of workers have the ability to accumulate
H over time, and have H reset by a certain amount when new technology enters the playing field.
Technology is given by ξ and has shocks of size κ, which (in expectation) displaces the human
capital of α share of workers, reducing their θ by m.

Production is given by a nested CES production function, where composite good X is produced
via a combination of L and ξ

X = (ξρλ+ Lρ(1− λ))(1/ρ) .
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Output, Y , is produced as a combination of X and H:

Y = (µHσ + (1− µ)Xσ)(1/σ) .

Technology evolves with process
ξt = (1− g)ξt−1 + κ dNt

where dN is a random variable with expectation ω.
Worker i ∈ sh has evolving human capital such that

θi,t = mθi,t−1 dMi,t − di,t h θi,t−1.

In this case, dM is a random variable representing human capital acquisition, m is the size of
the jump relative to initial human capital, dN is the same shock variable as in the equation for
technology, and h− is the scale of the loss of human capital (H) if a shock occurs. di,t is an i.i.d.
binomial random variable with expectation E(d) = α, indicating whether someone is "exposed" to a
technology shock or not. If you are exposed to a technology shock when one occurs, you experience
the human capital loss, otherwise you do not.

We solve the model in discrete time, with a monthly time-step δt, and we approximate the
continuum of workers with an exponentially increasing, finite grid of points on the [0, 1] interval.
Since we are approximating a continuum of workers, each gridpoint has an infinite number of
observations, and we can work directly with expectations when solving the model. This means for a
given starting grid point on the θ interval, we have

E(θi,t) = θi,t−1 +mφθi,t−1 − αh θi,t−1

Note that in discrete time, the technology and human capital processes admit a two-state Markov-
Switching VAR representation with a shock state (s = 0) and a no-shock state s = 1. Let i index
the starting gridpoint of a worker, with i+ 1 and i− 1 being the adjacent gridpoints.

With some abuse of notation, instead of thinking of θi,t as a single worker on the grid, we can
think of it as the probability mass (share of workers) on a gridpoint i.

E(θi,t|s = 0) = θi,t−1 − φθi+1,t−1 + φθi−1,t−1

This works because we set the distance between gridpoints is m. If we have a shock, we have

E(θi,t|s = 1) = θi,t−1 − φθi+1,t−1 + φθi−1,t−1 − αθi,t−1) + αh θi+m,t−1).

In other words, if we experience a shock, we get some mass from the gridpoint which is mh above
us, lose share α of our previous density as exposed workers, lose share φ to a higher gridpoint as
workers acquire new skills, and gain share φ from the gridpoint below.

We can represent this as a VAR process, with transition probability α to a gridpoint which is
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mh− points below the current, φ to a gridpoint above us, and so on. In practice, in order to make
h− a continuous parameter, we split the fall probability across the two relevant gridpoints, with
density allocated between them to make the fall have expectation h−. For example, if m was 3%,
and we needed a 5% fall, conditional on the fall a worker would have (roughly) a 2/3 chance of
falling two gridpoints and a 1/3 chance of falling 1 gridpoint.

The transition process for the workers in sl is very simple, as it is an absorbing state with no
entry or exit. So

θsl,t = θsl,t−1

in both shock periods and no-shock periods.
The transition process for ξ is given by

ξt|st = 0 = (1− g)ξt−1

and
ξt|st = 1 = (1− g)ξt−1 + κ.

Suppose we set up the VAR coefficient matrices, A, accordingly. Each period has probability ω of
experiencing a shock, and probability 1− ω of not experiencing a shock. This gives us transition
process

E(At) = (1− ω)At−1,0 + ωAt−1,1.

Bianchi (2016) demonstrates how to find the steady state of the Markov-Sitching VAR model.
For this exposition, we rely on his notation. He considers the MS-VAR process

Zt = cξt +AξtZt−1 + Vξtεt,

and
Vξt = RξtΣξt ,

where zt is a vector of variables, ct is a vector of constants,
In practice, our process for the mass of θ has a reflecting barrier at 1, and in order to enforce

the sum-to-1 constraint for the total mass on the θ grid we represent the VAR through a VECM
process.

We then solve for the steady state by finding the largest real eigenvalue of the Bianchi represen-
tation of the MS-VAR system. Because we have an absorbing state at the bottom of the θ grid
whose density is a known value (fixed before calibration), we exclude that point from the solution,
scaling down the intercept term by 1− sl. Finally, to compute the value at the top of the θ grid
(call it gridpoint j), we simply compute 1−∑i j θss,i − sl.

Once we’ve solved for the ergodic steady state, we can begin calculating the model moments
which correspond to our empirical calibration targets. Our process sets time step δt to one month.
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Our theoretical moments are calculated as one-month impact responses, scaled by an annualization
factor

√
12ω(1− ω) for aggregate moments (labor share and output), and

√
12ωα(1− ωα).

Impact responses for labor share and output are calculated relative to the ergodic steady state
for all state variables. The steady state values are iterated forward one period using the transition
matrices constructed above, but where a shock happens with certainty (effectively setting ω = 1
for a single period). To compare output, labor share, wages, and other desired targets, between
the values at the ergodic steady state relative to the shock period, we follow this procedure in each
period. First, we calculate the level of H at the steady state as

H =
N∑
i=1

θim(θi)

where m(thetai) is the mass of theta at gridpoint i. The workers in sl produce no H, so this is
sum of the value for θ at each gridpoints times the mass of workers at that rung of the ladder. L
is calculated as 1 −H. Output Y and the composite good X are calculated with the equations
provided above. σ, ρ, µ, and λ are free parameters. If we call ξ∗ the value of the technology state
variable at the ergodic steady state, ξ post-shock is ξ∗ + κ, where κ is a free variable. Wages
associated with H (wh) and L (wl) are calculated as the marginal product of each task. Given
output, these are calculated as

wh =(1− µ)µHσ−1(λξρ − Lρ(λ− 1))(σ/ρ) + µHσ)(1/σ)

(1− µ)(λξρ − Lρ(λ− 1))(σ/ρ) + µHσ
,

and

wl = (1− µ)(λξρ − Lρ(λ− 1))(σ/ρ) + µHσ)(1/σ)(λ− 1)(λξρ − Lρ(λ− 1))(σ/ρ)(µ− 1)Lρ−1

(λξρ + (1− λ)Lρ)((1− µ)(λξρ − Lρ(λ− 1))(σ/ρ) + µHσ)

For each period in question for the impact responses, wages are calculated by plugging in
the relevant state variables. Impact responses are calculated in log differences to align with our
calibration targets (e.g. log Yshock − log Yss), and subsequently scaled by the annualization factor.

77



Appendix Figures and Tables

Table A.1: Most Similar Patents For Select Occupations

Cashiers (SOC Code 412011)

5055657 Vending type machine dispensing a redeemable credit voucher upon payment interrupt
5987439 Automated banking system for making change on a card or user account
5897625 Automated document cashing system
6012048 Automated banking system for dispensing money orders, wire transfer and bill payment
5598332 Cash register capable of temporary-closing operation

Loan Interviewers and Clerks (SOC Code 434131)

6289319 Automatic business and financial transaction processing system
5611052 Lender direct credit evaluation and loan processing system
6233566 System, method and computer program product for online financial products trading
5940811 Closed loop financial transaction method and apparatus
5966700 Management system for risk sharing of mortgage pools

Railroad Conductors (SOC Code 534031)

5828979 Automatic train control system and method
6250590 Mobile train steering
3944986 Vehicle movement control system for railroad terminals
6135396 System and method for automatic train operation
5797330 Mass transit system
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Table A.2: Most Similar Occupations For Select Patents

“Knitting-machine” (Patent No. 276146, Issued in 1883)

Textile Knitting and Weaving Machine Setters, Operators, and Tenders
Sewing Machine Operators
Sewers, Hand
Fabric Menders, Except Garment
Textile Winding, Twisting, and Drawing Out Machine Setters, Operators, and Tenders

“Metal wheel for vehicles” (Patent No. 1405358, Issued in 1922)

Automotive Service Technicians and Mechanics
Cutting, Punching, and Press Machine Setters, Operators, and Tenders, Metal and Plastic
Maintenance Workers, Machinery
Grinding, Lapping, Polishing, and Buffing Machine Tool Setters, Operators, and Tenders,
Metal and Plastic
Rolling Machine Setters, Operators, and Tenders, Metal and Plastic

“System for managing financial accounts by a priority allocation of funds among accounts”
(Patent No. 5911135, Issued in 1999)

Financial Managers
Credit Analysts
Loan Interviewers and Clerks
Accountants and Auditors
Bookkeeping, Accounting, and Auditing Clerks
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Table A.3: Occupations Most and Least Exposed to Innovation

Top 5 Occupations by Average ηi,t Bottom 5 Occupations by Average ηi,t

Inspectors, Testers, Sorters, Samplers, and Weighers Mental Health Counselors

Metal Workers and Plastic Workers, All Other Dancers

Cutting, Punching, and Press Machine Setters,
Operators, and Tenders, Metal and Plastic

Funeral Attendants

Production Workers, All Other Judges, Magistrate Judges, and Magistrates

Electromechanical Equipment Assemblers Clergy
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Table A.4: Unconditional Correlations of ηi,t With Task Categories

NR Cog (Analytical) -0.12∗∗
(-2.53)

NR Cog (Interpersonal) -0.16∗∗∗
(-4.65)

NR Man (Physical) 0.24∗∗∗
(5.65)

NR Man (Interpersonal) -0.33∗∗∗
(-8.43)

Routine Cognitive 0.033
(0.95)

Routine Manual 0.24∗∗∗
(5.74)

This figure plots the correlations of ηi,t with the occupation task types computed from O*NET
in Acemoglu and Autor (2011). Correlations are weighted by the Acemoglu and Autor (2011)
occupation employment weights used to normalize the distribution of tasks to mean zero and
standard deviation one.
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Table A.5: Technology And Employment Over the Long Run (1850-2010)–Subsamples

A. Early Sample B. Later sample
Occ. Occ.×Ind. Occ. Occ.×Ind.

1850–1920 1910–1950 1930–1990 1950–1990
Technology Exposure, ηi,t -0.66∗∗ -0.60∗∗ -1.10∗∗∗ -1.41∗∗∗ -0.80∗∗∗ -0.69∗∗∗ -0.59∗∗∗ -0.64∗∗∗

(-2.19) (-2.24) (-3.61) (-3.65) (-4.13) (-4.39) (-3.00) (-3.45)
Observations 968 776 25,712 14,945 1,606 1,432 55,297 39,717
R2 (Within) 0.027 0.031 0.021 0.036 0.054 0.124 0.009 0.011
Controls
Time FE Y Y Y Y
Industry X Time FE Y Y Y Y
Lagged Dependent Variable Y Y Y Y

Note: The table above reports results from regressions of the form

1
k

(
log Yi,t+k − log Yi,t

)
= α0 + αt + β(k)ηi,t + ρ (log Yi,t − log Yi,t−k) + εi,t

for k = 10, 20 years for Census years spanning from 1850–2010. Here Yi,t is the occupation i’s share in total non-farm employment in Census year t. The main
variable of interest is ηi,t, our technology exposure measure (normalized to unit standard deviation). Employment growth rates is in annualized percentage terms.
Standard errors are clustered by occupation and corresponding t-stats are shown in parentheses. Observations are weighted by occupation employment share at time t.
Census year 1870 does not show up in the first column of the 20-year subsample regressions because the 1890 Census records no longer exist.
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Table A.6: Technology And Employment During and Outside of Innovation Waves

Innovation Wave Other Years
Technology Exposure, ηi,t -0.82∗∗∗ -0.53

(-5.92) (-1.54)
Time FE X X
N 1106 1468
R2 (Within) 0.091 0.018

The table above plots results from regressions of the form

log(Yi,t+k)− log(Yi,t) = α0 + αt + βηi,t + εi,t

for k = 20 years for Census years spanning from 1850-2000. Here Yi,t is occupation’s share in total
non-farm employment. ηi,t is standardized and growth rates are in annualized percentage terms.
The sample is split into periods of innovation waves as identified by the breakthrough patent index
of Kelly et al. (2020). The 20 year periods beginning in years 1880, 1910, 1920, and 1980, 1990
are labelled innovation waves with the remaining years representing non-innovation wave periods.
Standard errors are clustered by occupation and corresponding t-stats are shown in parentheses.
Observations are weighted by occupation employment share at time t.

83



Figure A.1: Sample Patent Topic Word Clusters

The above are four of the topics resulting from the LSH approximate nearest neighbors routine used
to separate words into clusters as described in section 3.3. The relative size of the word corresponds
to the importance of that word within the topic.
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Table A.7: Predictive Performance of 10-Year Employment and Wage Growth on Predictors Constructed
From Patent Topics

Panel A: Negative Constructed Predictor

Employment Growth Wage Growth
ξMean -1.25∗∗∗ -0.21∗∗∗

(-6.79) (-6.10)
ξPC1 -1.09∗∗∗ -0.20∗∗∗

(-6.32) (-6.11)
Year FEs X X X X
Controls X X X X

Panel B: Positive Constructed Predictor
Employment Growth Wage Growth

γMean 0.59∗∗∗ 0.019
(3.84) (0.70)

γPC1 0.50∗∗∗ 0.0062
(3.67) (0.24)

Year FEs X X X X
Controls X X X X

The tables above show coefficients from panel regressions of annualized wage and income growth
rates over the 10-year horizon on textual factors constructed to predict employment as described in
section 3.3. Regressions are of the form

yi,t+k − yi,t = α+ βZi,t + δXi,t + εi,t

For Zi,t = ξi,t (“labor-saving”) or γi,t (“productivity enhancing”). Controls Xi,t include three
one-year lags of dependent variable, time fixed effects, wage, and occupation employment share.
Subscripts PC1 and Mean denote versions computed using either the first principal component or
cross-sectional mean across individual textual predictors derived from the patent topics identified
by the Cong et al. (2019) method. Dependent variable is expressed in annualized percentage terms
and ηi,t is standardized. Standard errors are clustered by occupation and independent variables are
standardized. Observations are weighted by occupation’s employment share at time t. The sample
uses CPS merged outgoing rotation group data starting in 1982.
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Table A.8: Correlations Between Predictors Constructed From Patent Topics and Different Versions of
Occupation Technology Exposure ηi,t

All Patents Drop ICT Patents Just ICT Patents
ξMean 0.73∗∗∗ 0.88∗∗∗ 0.41∗∗∗

(20.53) (31.71) (10.21)
γMean -0.11∗∗∗ -0.17∗∗∗ -0.030

(-5.26) (-6.39) (-1.13)

This table reports correlations between versions of technology exposure ηi,t formed using different
sets of patents and the composite predictors constructed from textual factors using the Cong et al.
(2019) method to predict employment outcomes either negatively (ξMean) or positively (γMean).
The “Mean” label denotes versions of composite predictors constructed by taking the cross-sectional
means across individual textual factors which predict employment either negatively or positively.
The first two columns represent the baseline measure of ηi,t constructed using all patents; the next
two columns drop ICT patents, defined to be those falling under the instruments/information or
electronics categories; finally, the last two columns form ηi,t only using ICT patents.
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Table A.9: Breakthrough patents most related to tasks performed by order-fulfillment clerks

US. Pat. # Distance (ρ̃) Issue Year Title
5,696,906 0.933 1997 Telecommunication user account management system and method
5,627,973 0.915 1997 Method and apparatus for facilitating evaluation of business opportunities for supplying goods and/or services to potential customers
5,689,705 0.896 1997 System for facilitating home construction and sales
5,592,560 0.885 1997 Method and system for building a database and performing marketing based upon prior shopping history
5,687,212 0.885 1997 System for reactively maintaining telephone network facilities in a public switched telephone network
5,628,004 0.881 1997 System for managing database of communication of recipients
5,621,812 0.880 1997 Method and system for building a database for use with selective incentive marketing in response to customer shopping histories
5,638,457 0.880 1997 Method and system for building a database for use with selective incentive marketing in response to customer shopping histories
5,659,469 0.879 1997 Check transaction processing, database building and marketing method and system utilizing automatic check reading
5,592,378 0.874 1997 Computerized order entry system and method
5,787,405 0.896 1998 Method and system for creating financial instruments at a plurality of remote locations which are controlled by a central office
5,802,513 0.884 1998 Method and system for distance determination and use of the distance determination
5,717,596 0.878 1998 Method and system for franking, accounting, and billing of mail services
5,797,002 0.873 1998 Two-way wireless system for financial industry transactions
5,812,985 0.866 1998 Space management system
5,774,877 0.866 1998 Two-way wireless system for financial industry transactions
5,848,396 0.865 1998 Method and apparatus for determining behavioral profile of a computer user
5,790,634 0.865 1998 Combination system for proactively and reactively maintaining telephone network facilities in a public switched telephone system
5,734,823 0.864 1998 Systems and apparatus for electronic communication and storage of information
5,712,987 0.864 1998 Interface and associated bank customer database
5,995,976 0.912 1999 Method and apparatus for distributing supplemental information related to printed articles
6,006,251 0.897 1999 Service providing system for providing services suitable to an end user request based on characteristics of a request, attributes of a service and operating

conditions of a processor
5,930,764 0.889 1999 Sales and marketing support system using a customer information database
5,884,280 0.886 1999 System for and method of distributing proceeds from contents
5,991,728 0.884 1999 Method and system for the tracking and profiling of supply usage in a health care environment
5,903,873 0.876 1999 System for registering insurance transactions and communicating with a home office
5,991,876 0.875 1999 Electronic rights management and authorization system
5,953,389 0.869 1999 Combination system for provisioning and maintaining telephone network facilities in a public switched telephone network
5,893,075 0.868 1999 Interactive system and method for surveying and targeting customers
5,932,869 0.867 1999 Promotional system with magnetic stripe and visual thermo-reversible print surfaced medium
6,041,319 0.876 2000 Method and system for telephone updates of postal scales
6,061,506 0.874 2000 Adaptive strategy-based system
6,072,493 0.869 2000 System and method for associating services information with selected elements of an organization
6,105,003 0.864 2000 Customer data processing system provided in a showroom
6,070,160 0.854 2000 Non-linear database set searching apparatus and method
6,023,705 0.854 2000 Multiple CD index and loading system and method
6,154,753 0.846 2000 Document management system and method for business quality modeling
6,064,879 0.845 2000 Mobile communication method, and mobile telephone switching station customer management system, and mobile unit for implementing the same
6,112,181 0.842 2000 Systems and methods for matching, selecting, narrowcasting, and/or classifying based on rights management and/or other information
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Table A.10: Worker Earnings and Technology Exposure, by Prior Income and Education / Age

Income Percentile

(1) (2) (3) (4) (5)
Age Education

25–35 35–45 45–55 College No Coll
A. Cond. Mean, E[g], by Horizon

0 to 25-th -1.05 -1.72 -2.03 -2.14 -1.11
(-2.57) (-6.36) (-5.06) (-6.32) (-3.58)

25 to 50-th -0.28 -0.87 -2.24 -0.92 -1.11
(-0.97) (-2.89) (-3.18) (-2.72) (-4.40)

50 to 75-th -0.57 -0.68 -2.43 -0.82 -1.60
(-1.46) (-2.09) (-3.32) (-2.02) (-4.36)

75 to 95-th -0.39 -0.49 -2.22 -0.60 -2.13
(-0.53) (-1.56) (-4.73) (-1.37) (-7.52)

95 to 100-th -3.07 -1.85 -2.86 -1.98 -3.50
(-4.22) (-3.07) (-3.51) (-4.10) (-4.47)

B. Risk, Absolute Income Growth E[|g|]
0 to 25-th 0.01 -0.55 0.06 -0.51 -0.18

(0.04) (-2.13) (0.18) (-1.74) (-0.77)
25 to 50-th 0.20 -0.17 0.55 0.12 0.03

(0.68) (-0.81) (0.83) (0.48) (0.11)
50 to 75-th 0.42 0.06 1.17 0.50 0.49

(1.66) (0.31) (1.86) (1.85) (1.44)
75 to 95-th 0.61 0.12 1.51 0.66 1.01

(1.56) (0.45) (3.84) (2.87) (2.94)
95 to 100-th 2.38 1.44 2.38 2.01 2.09

(3.05) (3.03) (3.92) (6.02) (2.76)

C. Skewness, Prob. Large Income Decline p(g < p10)
0 to 25-th 0.18 0.25 0.68 0.40 0.20

(0.99) (1.93) (4.37) (2.5) (1.39)
25 to 50-th 0.07 0.16 0.73 0.24 0.28

(0.3) (0.86) (2.42) (1.37) (1.34)
50 to 75-th 0.18 0.16 0.91 0.26 0.56

(1.26) (1.08) (3.05) (1.82) (4.03)
75 to 95-th 0.07 0.05 0.90 0.15 0.83

(0.28) (0.27) (3.99) (0.87) (6.28)
95 to 100-th 2.42 0.68 1.46 1.14 1.53

(4.52) (2.24) (4.43) (4.56) (4.89)

Note: Panel A shows the estimated slope coefficients (times 100) from equation (21) in the main text: the dependent
variable is worker earnings growth over a 5-year horizon; the main independent variable of interest is a worker’s
technology exposure ηi,t. The slope estimate β(h) is allowed to vary with the worker’s prior income rank and age
(columns (1) to (3)) or education (columns (4) to (5)). Panel B shows the slope coefficients of a variant of the above
specification where we replace the dependent variable gi,t:t+h with its absolute value |gi,t:t+h|. Panel C replaces the
dependent variable with a dummy that takes the value of one if gi,t:t+h lies in the bottom 10-th percentile. See notes
to Tables 3 to 5 for additional details.
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Table A.11: Worker Earnings and Technology Exposure, by Education

Horizon Education (1) (2) (3) (4)
3 Years College -0.975 -0.880 -0.924 -0.911

(0.26) (0.246) (0.292) (0.274)
No College -1.32 -1.27 -1.30 -1.30

(0.153) (0.168) (0.253) (0.233)
No College - College -0.347 -0.391 -0.378 -0.388

(0.209) (0.197) ( 0.199) ( 0.192)
5 Years College -1.35 -1.17 -1.20 -1.14

(0.291) (0.282) (0.362) (0.343)
No College -1.68 -1.55 -1.54 -1.50

(0.216) (0.225) (0.31) (0.291)
No College - College -0.336 -0.387 -0.332 -0.3603

(0.2315) (0.225) (0.230) (0.225)
10 Years College -1.24 -1.08 -1.31 -1.21

(0.352) (0.343) (0.504) (0.486)
No College -1.82 -1.67 -1.85 -1.76

(0.281) (0.262) (0.404) (0.393)
No College - College -0.581 -0.581 -0.544 -0.550

(0.283) (0.274) (0.290) (0.283)
Fixed Effects:
Industry X X
Occupation X X
Year X
Industry x Year X X
Occupation x Year X X
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Table A.12: Worker Earnings and Technology Exposure, by Age

Worker Age Horizon (1) (2) (3) (4)
3 Years 25-35 -0.479 -0.396 -0.389 -0.388

(0.268) (0.244) (0.224) (0.209)
35-45 -0.903 -0.83 -0.866 -0.857

(0.18) (0.159) (0.181) (0.164)
45-55 -1.98 -1.91 -1.96 -1.95

(0.392) (0.42) (0.542) (0.524)

(45-55) - (25-35) -1.50 -1.51 -1.57 -1.56
(0.428) (0.441) (0.463) (0.462)

5 Years 25-35 -0.874 -0.706 -0.683 -0.64
(0.243) (0.227) (0.271) (0.251)

35-45 -1.23 -1.08 -1.09 -1.04
(0.148) (0.148) (0.221) (0.204)

45-55 -2.44 -2.29 -2.3 -2.25
(0.535) (0.542) (0.656) (0.634)

(45-55) - (25-35) -1.56 -1.59 -1.62 -1.61
(0.489) (0.494) (0.516) (0.512)

10 Years 25-35 -0.986 -0.823 -1.01 -0.918
(0.291) (0.266) (0.397) (0.38)

35-45 -1.43 -1.26 -1.47 -1.37
(0.238) (0.228) (0.39) (0.377)

45-55 -2.54 -2.40 -2.60 -2.51
(0.682) (0.676) (0.861) (0.832)

(45-55) - (25-35) -1.56 -1.58 -1.59 -1.59
(0.565) (0.564) (0.579) (0.574)

Fixed Effects:
Industry X X
Occupation X X
Year X
Industry x Year X X
Occupation x Year X X
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Table A.13: Worker Earnings and Technology Exposure, by Prior Income

Horizon Income Rank (1) (2) (3) (4)
3 Years [0, 25) -1.34 -1.21 -1.28 -1.24

(0.236) (0.239) (0.207) (0.216)
[25, 50) -0.934 -0.811 -0.883 -0.849

(0.145) (0.167) (0.212) (0.205)
[50, 75) -1.10 -0.974 -1.05 -1.01

(0.241) (0.244) (0.304) (0.289)
[75, 95) -1.14 -1.00 -1.09 -1.05

(0.28) (0.266) (0.26) (0.256)
[95, 100] -2.31 -2.20 -2.25 -2.24

(0.421) (0.422) (0.374) (0.366)
5 Years [0, 25) -1.76 -1.51 -1.56 -1.49

(0.234) (0.258) (0.267) (0.281)
[25, 50) -1.26 -1.02 -1.08 -1.01

(0.186) (0.21) (0.281) (0.282)
[50, 75) -1.43 -1.19 -1.24 -1.18

(0.33) (0.323) (0.395) (0.383)
[75, 95) -1.42 -1.17 -1.24 -1.17

(0.328) (0.315) (0.345) (0.339)
[95, 100] -2.71 -2.48 -2.52 -2.47

(0.578) (0.574) (0.516) (0.52)
10 Years [0, 25) -2.05 -1.74 -2.00 -1.85

(0.36) (0.337) (0.395) (0.393)
[25, 50) -1.14 -0.858 -1.1 -0.964

(0.338) (0.349) (0.474) (0.472)
[50, 75) -1.19 -0.90 -1.16 -1.01

(0.414) (0.40) (0.578) (0.541)
[75, 95) -0.986 -0.686 -0.967 -0.807

(0.445) (0.436) (0.527) (0.492)
[95, 100] -2.46 -2.20 -2.42 -2.28

(0.589) (0.594) (0.611) (0.596)
Fixed Effects:
Industry X X
Occupation X X
Year X
Industry x Year X X
Occupation x Year X X
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Table A.14: Technology And Employment Over the Long Run (1850-2010)–Heterogenous effects by age

A. Full Sample B. Sub-samples
1850–1920 1930–1960 1970–1990

Age (20–29) × Technology Exposure, ηi,t -0.71∗∗∗ -2.24∗∗∗ -0.073 -0.58∗∗
(-3.46) (-4.08) (-0.19) (-2.33)

Age (30–39) × Technology Exposure, ηi,t -0.57∗∗∗ -1.70∗∗∗ -0.098 -0.50∗∗
(-3.41) (-3.28) (-0.31) (-2.44)

Age (40–49) × Technology Exposure, ηi,t -1.10∗∗∗ -2.13∗∗∗ -0.62∗ -1.03∗∗∗
(-6.20) (-4.40) (-1.88) (-4.85)

Observations 6,512 2,232 1,989 2,291
R2 (Within) 0.066 0.074 0.055 0.090
Controls
Age Group X Year FE Y Y Y Y
Lagged Dependent Variable Y Y Y Y
P-val (40–49) - (20–29) 0.015 0.776 0.129 0.002

Note: The table above reports results from regressions of the form

1
k

(
log Yi,a′,t+k − log Yi,a,t

)
= α0 + αt + β(k, a)ηi,t + ρ (log Yi,t − log Yi,t−k) + εi,t

for k = 20 years for Census years spanning from 1850-2010, where we allow the coefficients to vary by age. The dependent variable Yi,a,t tracks employment by workers
in age group a; for example, to compute the 20-year growth rate in employment in 1900 for workers aged 20–29 in occupation i, we compare it to the employment
of 40–49 year old workers in occupation i in 1920. The main variable of interest is ηi,t, our technology exposure measure (normalized to unit standard deviation).
Employment growth rates is in annualized percentage terms. Standard errors are clustered by occupation and corresponding t-stats are shown in parentheses.
Observations are weighted by occupation employment share at time t. Census year 1870 does not show up in the first column of the 20-year subsample regressions
because the 1890 Census records no longer exist.
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