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Abstract
We construct new technology indicators using textual analysis of patent documents and occupation
task descriptions that span of two centuries (1850–2010). At the industry level, improvements
in technology are associated with higher labor productivity but a decline in the labor share.
Exploiting variation in the extent certain technologies are related to specific occupations, we show
that technological innovation has been largely associated with worse labor market outcomes—
wages and employment—for incumbent workers in related occupations using a combination of
public-use and confidential administrative data. Panel data on individual worker earnings reveal
that less educated, older, and more highly-paid workers experience significantly greater declines
in average earnings and earnings risk following related technological advances. We reconcile
these facts with the standard view of technology-skill complementarity using a model that allows
for skill displacement.
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Economists and workers alike have long worried about the employment prospects of occupations

whose key tasks can be easily performed by a machine, robot, software, or some other form of capital

that substitutes for labor.1 These concerns have been exacerbated by recent breakthroughs in

automation technologies (e.g., software, artificial intelligence, robotics) which have expanded the set of

manual and cognitive tasks which can performed by machines and have occurred contemporaneously

with an increase in income inequality and a fall in the labor share of aggregate output.2 Yet, despite

the importance of these issues, systematic evidence for technological displacement remains elusive.3

Our goal is to fill this gap: we leverage over a century and a half of data to propose and validate

new metrics of workers’ exposure to technological innovation and relate them to workers’ labor

market outcomes, both at the aggregate as well as the individual level.

To quantify workers’ exposures to technical change we measure the similarity between the textual

description of the tasks performed by an occupation and that of major technological breakthroughs.

We identify the latter through the textual analysis of patent networks using the methodology of Kelly,

Papanikolaou, Seru, and Taddy (2020). To estimate the distance between a breakthrough innovation

and workers’ task descriptions, we leverage recent advances in natural language processing that

allow us to compute a measure of the similarity between documents that accounts for synonyms.

By exploiting the timing of patent grants we can identify the extent to which certain worker groups

(occupations) are exposed to major technological breakthroughs at a given point in time.

In sum, our indices capture the extent to which specific occupations are exposed to breakthrough

innovations in a given year. We emphasize that, a priori, we are agnostic on whether innovations

that are similar to tasks certain occupations perform are likely to be substitutes or complements. For

that, we need to examine how our indicators correlate with labor market outcomes. A key advantage

of our methodology is that it relies only on document text; as such, we are able to construct

time-series indices of occupation exposures that span the last two centuries. For example, our

technology exposure for “molders, shapers, and casters, except metal and plastic”—an occupation

category which includes glass blowers as a sub-occupation—takes a relatively high value in the
1Fear of technological unemployment is not new. In 350 BCE, Aristotle wrote: “[If] the shuttle would weave and

the plectrum touch the lyre without a hand to guide them, chief workmen would not want servants, nor masters slaves.”
In 1811, skilled weavers and textile workers (known as Luddites) worried that mechanizing manufacturing (and the
unskilled laborers operating the new looms) would rob them of their means of income. In 1930, Keynes described
this type of potential labor market risk when he said, “We are being afflicted with a new disease of technological
unemployment...due to our discovery of means of economising the use of labor outrunning the pace at which we can
find new uses for labor." More recently, a McKinsey report estimated that between 400 million and 800 million jobs
could be lost worldwide due to robotic automation by the year 2030.

2For instance, one of the leading explanations for the increase in the skill premium is skill-biased technical change,
whereas the decline in the labor share has been attributed to capital-embodied technical change. See Goldin and Katz
(2008); Krusell, Ohanian, Ríos-Rull, and Violante (2000); Karabarbounis and Neiman (2013); Acemoglu and Restrepo
(2020, 2018, 2021)

3Due to the difficulty of constructing broad measures of labor-displacive innovations, existing work has focused on
analyzing specific instances in which the impact of a specific technology on workers can be identified (Atack, Margo,
and Rhode, 2019; Feigenbaum and Gross, 2020; Akerman, Gaarder, and Mogstad, 2015; Humlum, 2019).
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early 1900s because of similarity with patents such as US patent number 814,612, entitled “Method

of Making glass sheets.” This patent relates to a technology for making glass called the cylinder

machine, which allowed glass manufacturers to replace the labor of skilled hand glass blowers in

favor of a highly mechanized and capital-intensive production process.4

Examining our technology exposure measure, we find that, prior to 1980, innovation was

consistently associated with manual physical tasks; by contrast, the innovations of the late 20th/early

21st century have become relatively more related to cognitive tasks. This pattern is partly driven

by the increased prevalence of breakthrough patents related to computers and electronics. Last,

occupations that are associated with interpersonal tasks have consistently low exposures to innovation

throughout the entire sample period.

Our analysis of technical change and labor market outcomes delivers several new findings. First,

we find that workers most exposed to technological breakthroughs have experienced consistently

negative labor market outcomes. Indeed, a higher rate of innovation in a given industry is associated

with a decline in the labor share of output even as labor productivity rises. Comparing workers

across occupations differentially exposed to technology improvements, we find that an acceleration

of technical change is associated with declines in employment and wage earnings for affected workers.

The negative correlation between employment and our technology exposure measure is largely

consistent over time—starting from the Second Industrial Revolution of the late 19th century to the

present. We find some evidence that the negative relation between our measure and employment is

stronger in recessions—consistent with the literature on job polarization (Jaimovich and Siu, 2018).

These negative relations are estimated using a combination of public-use Census micro-data, which

are available over longer horizons, and confidential administrative data from the Census which

include individual tax records starting in the early 1990s.5

Second, we exploit the richness of administrative data to examine how these relations vary with

observable characteristics, by studying a unique panel of administrative earnings records from the US
4Jerome (1934) documents a dramatic transformation in the production process of the glass making industry as a

result of the cylinder machine: “By 1905 many hand plants had gone out of business, wages of blowers and gatherers
were reduced 40 per cent, and the new machine may be said to have achieved commercial success . . . in the quarter
century following the introduction of machine blowing, the window-glass industry, one of the last strongholds of
specialized handicraft skill, has undergone a technological revolution resulting in the almost complete disappearance
of the hand branch of the industry and the elimination of two skilled trades and one semiskilled, and also the partial
elimination of the skilled flatteners.”

5Such a negative relation is not obvious ex-ante, since our approach could in principle identify both labor-saving
as well as labor-enhancing technologies. If we are primarily interested in identifying labor-saving technologies, it
is possible that our measure is diluted by mixing labor-saving and productivity-enhancing innovations. To address
this possibility, we exploit recent advances in topic modeling to construct a composite predictor from patent text
whose purpose is to maximize the in-sample predictability of employment declines–i.e., to identify language consistent
with labor saving innovations. After conducting this analysis, we find that our baseline innovation measures have
a correlation of approximately 75% with this statistical factor. Comparing the performance of our measure to this
benchmark, we found that both approaches lead to quantitatively similar negative outcomes in terms of both earnings
and employment. On this basis, we conclude that our methodology primarily identifies labor-displacing innovations.
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Social Security Administration which are linked with information on occupation and education from

the Current Population Survey. Thus, relative to the literature which has mostly studied repeated

cross-sections, we are able to measure a worker’s occupation prior to the development of related

technologies, then estimate how her earnings evolve in future years even if she switches employers,

industries, and/or occupations. This analysis allows us to study the link between innovation and

subsequent worker-level earnings growth rates and to address a number of potential concerns about

composition effects driving our results. Our empirical analysis leverages the granularity of our

patent-occupation measures to exploit variation at the industry-occupation level, i.e., in relative

differences in the rate at which firms in different industries develop new technologies which are

similar to a given occupation at the same point in time.

Across specifications, we find that the labor earnings of older or less educated workers are

significantly more responsive to technological innovation than the average worker. More importantly,

however, we find that the highest paid workers are also relatively more exposed. Specifically, workers

at the top end of the earnings distribution—relative to their peers in the same occupation and in the

same industry—also experience significantly larger declines than the average workers. Specifically,

a one-standard deviation increase in our exposure measure is associated with a 2.5% decline in

subsequent earnings compared to a 1.3% decline for the average worker. Our results are unchanged

if we further control for common shocks to labor demand at the industry and occupation levels via

industry-time and occupation-time fixed effects, respectively.

The fact that earnings of highly paid workers respond more to our technology exposure measure

appears at first to be at odds with the canonical model of capital-skill complementarity. Indeed, a

common proxy for worker skill is past income, so the fact that more highly paid workers experience

larger declines seems surprising. We argue that it is not: though (a subset of) skilled workers as

a group may benefit, if technological innovation is associated with skill displacement individual

workers whose prior skills become obsolete may be left behind. Thus, higher paid (skilled) workers

have more to lose. Consistent with this view, we find that, for the highest-paid workers (top 5% in

past earnings relative to their peers in the same occupation and industry), a one-standard deviation

increase in technology exposure is associated with a 1.26 percentage point increase in the probability

of falling to the bottom decile of wage growth—compared to a 0.41% percentage point increase for

the average worker.

To formalize this intuition, we introduce skill displacement in the canonical model of capital-skill

complementarity (see, e.g. Krusell et al., 2000). We allow individual workers to supply both skilled

and unskilled labor services; the quantity of skilled labor a given worker can supply depends on

her skill. Improvements in technology are associated with increased likelihood of skill loss. Thus,

even though skilled workers as a group (specifically, those that retain their skill) experience higher
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wage earnings following improvements in technology, unlucky individual workers can be left behind.

On average, top workers may experience lower earnings growth following periods of technological

advances if the increase in the likelihood of displacement is sufficiently high.

The calibrated model quantitatively replicates our new facts. In the model, increases in

technological innovation lead to an increase in labor productivity and the skill premium—yet the

labor share of output falls. On average, exposed workers in the model experience declines in wage

earnings relative to peers whose skills are not related to the new technologies, and these differences

are the largest for the highest paid workers. Importantly, these patterns emerge even though

technology is more complementary to skilled that unskilled labor services. Following an innovation,

high income workers whose skills are not displaced benefit from two forces: 1) complementarities

with the more productive technology and 2) the fact that displacement of other high skilled workers’

skills makes their expertise even more scarce and thus more valuable. Our model replicates our

empirical result that workers with lower earnings also are hurt by the emergence of new technologies;

specifically, this result obtains not because specific skills are displaced, but rather because of an

increase in the supply of workers performing unskilled tasks which lowers wages.

With the model in hand, we also conduct some simple comparative statics exercises to consider

the potential implications of an acceleration of the rate of innovation in the economy, consistent

with the observed increase in the arrival rate of breakthrough patents which began in 1980. We

consider two potential experiments. In the first case, we increase the arrival rate of new technologies

but hold fixed the rate at which workers accumulate human capital. In the latter case, we also

increase the rate at which workers acquire new skills so that the overall number of efficiency units

of skilled human capital stays constant. In both model scenarios, such a shift generates increases in

output, declines in the labor share, and increases in the skill premium in both the short and long

run, all of which are consistent with trends in recent data from the US. In the former case, income

inequality increases over the medium term but declines over the longer run because the higher rate

of skill displacement eventually compresses the skill distribution by enough to offset the impact

of a higher skill premium. In the latter case, this equalizing force is neutralized and thus income

inequality increases in both the short and long run.

In sum, we provide and validate a new measure of workers’ exposure to technological change

that is based on the similarity between patent documents and worker job descriptions. Overall, we

document a robustly negative relation between out technology exposure measure and subsequent

labor market outcomes, results which are consistent with a model with capital-skill complementarity

and skill displacement.

Our work contributes to the voluminous literature seeking to understand the determinants of

rising inequality and the fall in the labor share. Existing work emphasizes the complementarity
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between technology and certain types of worker skills (Goldin and Katz, 1998, 2008; Autor, Levy,

and Murnane, 2003; Autor, Katz, and Kearney, 2006; Goos and Manning, 2007; Autor and Dorn,

2013); or the substitution between workers and capital (Krusell et al., 2000; Hornstein, Krusell, and

Violante, 2005, 2007; Karabarbounis and Neiman, 2013; Acemoglu and Restrepo, 2020; Hemous and

Olsen, 2021). Many models in this literature treat a worker skill as a fixed characteristic and study

how demand for technologies affects differences in wages between groups with different ex ante skill

levels. Our contribution is to provide a direct measure of technology exposure of specific workers

and examine the extent to which advances in technology are associated with differences in their

labor market outcomes. Motivated by our empirical evidence, our model allows for the possibility

that gains from new technologies can displace the demand for specific expertise of workers skilled at

tasks associated with older vintages, similar to a literature on vintage specificity of human capital

(Chari and Hopenhayn, 1991; Violante, 2002; Deming and Noray, 2020) and models which seek to

explain earnings losses from job displacement via obsolescence/loss of specific human capital (Neal,

1995; Kambourov and Manovskii, 2009; Huckfeldt, 2021; Braxton and Taska, 2020).

We are not the first to analyze the differential exposure of certain occupations to technical

change. Autor and Dorn (2013); Acemoglu and Autor (2011); Autor et al. (2003) document the

secular decline in occupations specializing in routine tasks, starting in the late 20th century. The

key idea is that routine tasks can be easily codified into a sequence of instructions. Hence, such

tasks are relatively more prone to labor-saving technological change than other more complex tasks.

Despite the success that this literature has had in explaining which occupations have been exposed

to technologies, and what have been the effects, it is still an open question how this exposure changes

over time, which technologies relate to which types of tasks and which occupations, and whether

or not technological unemployment is a robust phenomenon in other time periods. More recently,

Webb (2019) also analyzes the similarity between patents and occupation task descriptions. Our

work differs in both scope and aim. Webb (2019) focuses on automation and the future of work,

and thus restricts attention to patents identified as being related to robots, AI, or software. As

a result, the analysis in Webb (2019) is largely cross-sectional in nature as he focuses on a single

technological episode—the rise of AI and robots. In contrast, we construct time-series indicators to

understand the relation between innovation and employment over different technological episodes

and its impact on workers with different characteristics. Further, focusing on the more recent period

for which wage earnings data is available (after 1980), we show that the predictability of our measure

for worker earnings is complementary to the information contained in the routine-task intensity

measure of Autor and Dorn (2013), the AI and robotics occupation exposure measure of Webb

(2019) and is not driven by industry-specific trends.6

6In related work, Mann and Püttmann (2018) and Dechezleprêtre, Hémous, Olsen, and Zanella (2021) use patent
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A significant contribution of our work lies in its scope: we provide a measure of occupational

exposure to technical change that spans the period from 1850 to 2010. An important advantage of

our analysis is that it allows us to draw broad conclusions regarding the relation between technical

change and worker outcomes over a long time period. Further, by constructing measures at the

patent-occupation level, our approach allows us to study technological change at a highly granular

level. Patents also have the advantage of being associated with specific timing (filing and approval

dates) and are linkable to specific firms. To this end, our empirical analysis uses this granular

information to compute measures of technological change at the industry-occupation level. Our

results thus complement some earlier studies which, by narrowing their scope, are able to analyze

the impact of worker earnings associated with specific technologies. For example, Atack et al. (2019)

analyze how workers’ task transitioned from hand to machine production in the late 19th century.

Recently, Feigenbaum and Gross (2020) show that incumbent telephone operators were more likely

to be in lower-paying occupations following the adoption of mechanical switching technology by

AT&T. Akerman et al. (2015) and Humlum (2019) provides an in depth analyses of impacts of

adoption of broadband internet and industrial robots, respectively, leveraging microdata on affected

workers and firms.

Though labor income risk is not the primary focus of our study, we reach a similar conclusion

as Kogan, Papanikolaou, Schmidt, and Song (2020): higher-paid workers face considerably greater

risk in their labor income as a result of technological innovation. Though some of the conclusions

are similar, these two papers ask different questions. Kogan et al. (2020) examine the dynamics of

wage earnings in response to innovation by the workers’ own firm or its competitors in the product

market. Kogan et al. (2020) are interested in the extent to which profit-sharing motives transfer the

risk of creative destruction from the firm owners to its workers. By contrast, we examine outcomes

for all workers in the same industry, differentiated by their occupation (and its exposure to major

innovations). Since our goal is to capture not only innovation by a firm but also the overall adoption

of a technology in a given sector, the exact origin of these innovations are not particularly relevant.

1 Motivation: Technology, Productivity, and the Labor Share

We begin with a set of facts regarding the joint dynamics of aggregate measures of innovation,

measured productivity, and the labor share that serve to motivate the remainder of our analysis.

To do so, we obtain data on industry-level measures of output (value added), employment and the

labor share from the NBER manufacturing database—which cover the 1958 to 2018 period.

text with different classification algorithms to identify automation patents in more recent periods, though they do not
relate these patents with specific occupations performing related tasks.
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Measuring the degree of technological innovation that takes place in a particular industry at

a particular point in time is considerably more challenging. We do so by relying on patent data

and closely follow the methodology of Kelly et al. (2020). In particular, Kelly et al. (2020) identify

breakthrough innovations as those that are both novel (whose descriptions are distinct from their

predecessors) and impactful (they are similar to subsequent innovations). They measure a patent’s

novelty as its dissimilarity with the existing patent stock at the time it was filed. In particular, they

construct a measure of ‘backward similarity’

BSτbj =
∑

i∈Bj,τb

ρj,i, (1)

where ρi,j is the pairwise cosine similarity (using TF-IDF weights) of patents i and j and Bj,τb
denotes the set of “prior” patents filed in the τb calendar years prior to j’s filing. Patents with

low backward similarity deviate from the state of the art and are therefore novel. Similarly, they

measure a patent’s impact by its ‘forward similarity’ as

FS
τf
j =

∑
i∈Fj,τf

ρj,i, (2)

where Fj,τf denotes the set of patents filed over the next τf calendar years following patent j’s filing.

The forward similarity measure in (2) estimates of the strength of association between the patent

and future technological innovation over the next τ years.

The Kelly et al. (2020) patent-level measure combines forward and backward similarity to

identify patents that are both novel and impactful,

qτj = logFSτfj − logBSτbj . (3)

To create a time-series index, Kelly et al. (2020) remove calendar year fixed effects from (3) in order

to adjust for shifts in language over time. After defining a ‘breakthrough’ patent as one that falls

in the top 10% of the unconditional distribution of importance, they then construct a time series

index as the number of breakthrough inventions granted in each year.

In brief, their measure of innovation in industry j in year t is defined as

ψj,t = 1
κt

∑
p∈Γt

αj,p. (4)

To construct (4), we need to determine the set of breakthrough patents that are relevant to a given

industry. We first identify the set Γt of ‘breakthrough’ patents as those that fall in the top 10%
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of the unconditional distribution of patent importance (based on their ratio of 10-year forward to

5-year backward similarity). We map patents to industries based on their CPC technology class

using the probabilistic mapping constructed by Goldschlag, Lybbert, and Zolas (2020). Here, αj,p
denotes the probability of breakthrough patent p being assigned to industry j. Last, we scale (4) by

US population κt and normalize to unit standard deviation.

We then estimate the following specification

logXj,t+k − logXj,t = α(k) + β(k)ψj,t + δ(k)Zj,t + εj,t, k = 1 . . . T years. (5)

We focus on four outcome variables: output (value-added); employment; labor productivity (value-

added per worker); and the labor share. We examine horizons of up to T = 6 years. Controls

include the lagged 5-year growth rate of the outcome variable and year fixed effects.

Figure 6 plots the estimated impulse response coefficients β(k). Panel A illustrates that an

one-standard-deviation increase in the degree of innovation ψj,t in a given industry is associated

with an approximately 2% increase in output over the next six years. However, this increase in

output primarily reflects an increase in productivity: as we see from Panels B, the overall level

of employment in the industry weakly falls. As a result, we see in Panel C that, in response

to a one-standard-deviation increase in ψj,t, labor productivity in the industry rises sharply—by

approximately 3% over the next six years. Panel D illustrates that the labor share of output in the

industry falls.

In brief, an increase in our technology measure is associated with higher measured labor

productivity and a decline in the labor share. This pattern strongly suggests that, on average, our

technology measure ψj,t captures innovations that likely act as substitutes, rather than complements

to labor. That is, even though improvements in technology are associated with an increase in the

measured productivity of labor, they are associated with declines in the labor share. The remainder

of the paper builds on this idea and aims to provide further refinement to our technology measure

by identifying which set of innovations are more likely to substitute for labor inputs. In the process

of doing so, we also broaden the coverage from just manufacturing to all sectors in the economy.

2 Measuring Workers’ Technology Exposure

Here, we construct a measure of technological innovation occurring at a particular point in time

that is relevant for a particular set of worker tasks (occupation). Our interpretation is that this

measure can be used to proxy for a worker’s exposure to technological innovation. To do so, we

add an additional source of cross-sectional variation to the Kelly et al. (2020) time-series measure
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of innovation discussed above. Specifically, we recognize that breakthrough innovations at a given

point in time may be differentially related to particular occupations. To construct our measure,

we rely on measuring the ‘distance’ between the description of the technology (from the patent

document) to the description of the tasks that a given occupation performs (from the Dictionary of

Occupational Titles, DOT). The remainder of this section describes our methodology.

2.1 Data and Methodology

We identify technologies that are relevant to specific worker groups as those that are similar to

the descriptions of the tasks performed by a given occupation. We do so by analyzing the textual

similarity between the description of the innovation in the patent document and the worker’s job

description.

We obtain text data for measuring patent/job task similarity from two sources. Job task

descriptions come from the revised 4th edition of the Dictionary of Occupation Titles (DOT)

database. We use the patent text data parsed from the USPTO patent search website in Kelly

et al. (2020), which includes all US patents beginning in 1976, comprising patent numbers 3,930,271

through 9,113,586, as well as patent text data obtained from Google patents for pre-1976 patents.

Our analysis of the patent text combines the claims, abstract, and description section into one

patent-level corpus for each patent. Since the DOT has a very wide range of occupations (with over

13,000 specific occupation descriptions) we first crosswalk the DOT occupations to the considerably

coarser and yet still detailed set of 6-digit occupations in the 2010 edition of O*NET. We then

combine all tasks for a given occupation at the 2010 O*NET 6-digit level into one occupation-level

corpus. See Appendix A for further details on cleaning and preparing the text files for numerical

representation.

To identify the similarity between a breakthrough innovation and an occupation, we need to

identify meaningful connections between two sets of documents that account for differences in the

language used. The most common approach for computing document similarity is to create a matrix

representation of each document, with columns representing document counts for each term (or

some weighting of term counts) in the dictionary of all terms contained in the set of documents,

and with rows representing each document. Similarity scores could then be computed simply as the

cosine similarity between each vector of weighted or unweighted term counts:

ρi,j = Vi
||Vi||

· Vj
||Vj ||

(6)

Here Vi and Vj denote the vector of potentially weighted terms counts for documents i and j.

This approach is often referred to as the ‘the bag-of-words’ approach, and has been used
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successfully in many settings. For example, Kelly et al. (2020) use a variant of this approach to

construct measures of patent novelty and impact based on pairwise distance measures between

patent documents. Since patent documents have a structure and a legalistic vocabulary that is

reasonably uniform, this approach works quite well for patent-by-patent comparisons. However, this

approach is less suited for comparing patent documents to occupation task descriptions. These two

sets of documents come from different sources and often use different vocabulary. If we were to

use the bag-of-words approach, the resulting vectors Vi and Vj would be highly sparse with most

elements equal to zero, which would bias the distance measure (6) to zero.

The root cause of the problem is that the distance measure in (6) has no way of accounting for

words with similar meanings. For example, consider a set of two documents, with the first document

containing the words ‘dog’ and ‘cat’ and the other containing the words ‘puppy’ and ‘kitten’. Even

though the two documents carry essentially the same meaning, the bag of words approach will

conclude that they are distinct: the representation of the two documents is V1 = [1, 1, 0, 0] and

V2 = [0, 0, 1, 1], which implies that the two documents are orthogonal, ρ1,2 = 0.

To overcome this challenge, we leverage recent advances in natural language processing that

allow for synonyms. The main idea behind this approach is to represent each word as a dense vector.

The distance between two word vectors is then related to the likelihood these words capture a similar

meaning. In our approach, we use the word vectors provided by Pennington, Socher, and Manning

(2014), which contains a vocabulary of 1.9 million word meanings (embeddings) represented as

(300-dimensional) vectors.7 Appendix Section A.2 contains a brief discussion of how the Pennington

et al. (2014) word embeddings are constructed.

The next step consists of using these word vectors to construct measures of document similarity.

To begin, we first construct a weighted average of the word embeddings with a document (a patent or

occupation description). Specifically, we represent each document as a (dense) vector Xi, constructed

as a weighted average of the set of word vectors xk ∈ Ai contained in the document,

Xi =
∑
xk∈Ai

wi,kxk. (7)

7The basis for this word vector space is arbitrary; distances between word embeddings are only well-defined
in relation to one another and a different training instance of the same data would yield different word vectors
but very similar pairwise distances between word vectors. The two most popular approaches are the “word2vec”
method of Mikolov, Sutskever, Chen, Corrado, and Dean (2013) and the global vectors for word representation
introduced by Pennington et al. (2014). These papers construct mappings from extremely sparse and high-dimensional
word co-occurence counts to dense and comparatively low-dimensional vector representations of word meanings
called word embeddings. Their word vectors are highly successful at capturing synonyms and word analogies
(vec(king) − vec(queen) ≈ vec(man) − vec(woman) or vec(Lisbon) − vec(Portugal) ≈ vec(Madrid) − vec(Spain), for
example). Thus they are well-suited for numerical representations of the “distance” between words. The word vectors
provided by Pennington et al. (2014) are trained on 42 billion word tokens of web data from Common Crawl and are
available at https://nlp.stanford.edu/projects/glove/.
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A key part of the procedure consists of choosing appropriate weights wi,k in order to emphasize

important words in the document.

In natural language processing, a common approach to emphasize terms that are most diagnostic

of a document’s topical content is the ‘term-frequency-inverse-document-frequency’ (TF-IDF). We

follow the same approach: in constructing (7), we weigh each word vector by

wi,k ≡ TFi,k × IDFk. (8)

The first component of the weight, term frequency (TF), is defined as

TFi,k = ci,k∑
j ci,j

, (9)

where ci,k denotes the count of the k-th word in document i—a measure of its relative importance

within the document.

The inverse-document frequency is

IDFk = log
( # of documents in sample
# of documents that include term k

)
. (10)

Thus, IDFk measures the informativeness of term k by under-weighting common words that appear

in many documents, as these are less diagnostic of the content of any individual document.

In brief, TFIDFi,k overweighs word vectors for terms that occur relatively frequently within a

given document and underweighs terms that occur commonly across all documents. We compute the

inverse-document-frequency for the set of patents and occupation tasks separately, so that patent

document vectors underweight word embeddings for terms appearing in many patents and occupation

vectors underweight word embeddings for job task terms that appear in the task descriptions of

many other occupations.

Armed with a vector representation of the document that accounts for synonyms, we next use

the cosine similarity to measure the similarity between patent i and occupation j,

Simi,j = Xi

||Xi||
· Xj

||Xj ||
(11)

This is the same distance metric as the bag of words approach, except now Xi and Xj are dense

vectors carrying a geometric interpretation akin to a weighted average of the semantic meaning of

all nouns and verbs in the respective documents.

In sum, we use a combination of word embeddings and TF-IDF weights in constructing a distance

metric between a patent document (which includes the abstract, claims, and the detailed description
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of the patented invention) and the detailed description of the tasks performed by occupations. Our

methodology is conceptually related, though distinct, to the method proposed by Webb (2019), who

also analyzes the similarity between a patent and O*NET job tasks.8

2.2 Examples

To illustrate the effectiveness of our methodology in identifying links between technology and occu-

pation task descriptions, we consider a few representative examples, some of which are summarized

in Figure 1.

A key advantage of our measure is that it is available over long periods of time, and thus allows

us to study very different technologies from three distinct periods of technological change–the Second

Industrial Revolution of the late 1800’s, the period spanning the from 1920s to around 1940, and the

information technology revolution spanning the end of the 20th and beginning of the 21st centuries.

For example, consider three patents in the list of breakthrough patents identified by Kelly et al.

(2020). Patent 276,146, titled “Knitting Machine”, was issued in the height of the Second Industrial

Revolution in 1883. The occupation that is most closely related to this patent is “Textile Knitting

and Weaving Machine Setters, Operators, and Tenders”; the next most similar occupation is “Sewing

Machine Hand Operators”, followed by “Sewers, hand”. Next consider the patent for “Metal wheel

for vehicles (1,405,358), which is issued in 1922. The occupation most closely related to this patent

is “Automotive Service Technicians and Mechanics”, with other production and metal machine

workers following. Finally, we examine a patent from a very different era and representing a very

different technology. The patent, entitled “System for managing financial accounts by a priority

allocation of funds among accounts,” is U.S. patent number 5,911,135 and was issued in 1999. The

top occupations related to this patent are Financial managers, credit analysts, loan interviewers

and clerks.

We next perform the reverse exercise, where we fix a particular occupation, and list the

most relevant innovations. The occupations we choose are cashiers, loan interviewers and clerks,

and railroad conductors. Table A.2 lists the top five patents that are linked to each of these

occupations. Examining the patent tiles, we see that each one of these patents is directly related to

the work performed by the given occupation. For example, one of the top patents for cashiers is
8Webb (2019) focuses on similarity in verb-object pairs in the title and the abstract of patents with verb-object

pairs in the job task descriptions and restricts his attention to patents identified as being related to robots, AI, or
software. He uses word hierarchies obtained from WordNet to determine similarity in verb-object pairings. By contrast,
we infer document similarity by using geometric representations of word meanings (GloVe) that have been estimated
directly from word co-occurence counts. Furthermore, we use not only the abstract but the entirety of the patent
document—which includes the abstract, claims, and the detailed description of the patented invention. In addition to
employing a different methodology, we also have a broader focus: we are interested in constructing time-series indices
of technology exposures. As such, we compute occupation-patent distance measures for all occupations and the entire
set of USPTO patents since 1836.
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“Vending type machine dispensing a redeemable credit voucher upon payment interrupt” (patent

5,055,657); the top patent for loan interviewers and clerks is titled “Automatic business and financial

transaction processing system” (patent number 6,289,319). And finally, for rail road conductors,

titled “Automatic train control system and method” (patent 5,828,979) is the top patent. In general

the patents showing up on this list represent technologies that (1) relate to the work performed

by individuals in that the occupation; and (2) if adopted, appear likely to be able to change the

way that an occupation performs its core work functions and/or substitute for work done by that

occupation.

In sum, these examples illustrate the ability of our method in identifying technologies that are

related to a particular occupation. However, it is not immediately obvious whether these technologies

benefitted workers in these occupations or whether they led to the displacement of workers. As a

concrete example, consider US patent number 6,289,319, titled “Automatic business and financial

transaction processing system”, and which as shown in Table A.1 is the most similar patent to

the “Loan Interviewers and Clerks” occupation. The DOT task description indicates that a person

with this occupation “calls or writes to credit bureaus, employers, and personal references to check

credit and personal references.” The description of this patent states that “Loan processing has

traditionally been a labor-intensive business...the principal object of this invention is to provide an

economical means for screening loan applications.” We interpret this innovation as an example of a

technology which has high potential to be labor saving because it is intended to perform the same

tasks performed manually by a worker in a more efficient manner.

However, there are also many counter-examples of new technologies that improve the productivity

of tasks that workers are currently performing. Our exposure measure potentially also picks up these

instances. For instance consider the occupation “Database Administrators” (SOC code 151141).

According to the DOT, a database administrator “coordinates physical changes to computer

databases.” According to our distance measure, one of the most similar patents to this occupation is

US patent number 5,093,782, entitled “Real time event driven database management system.” This

patent indicates that it provides “a database management system which is capable of supporting

processes requiring the updating and retrieval of data elements at a high rate.” This is likely to

make the work of database administrators more efficient and hence looks more likely to be labor

productivity-enhancing for this occupation.

Most likely, some of these technologies benefitted some workers at the expense of others. To

illustrate the potential for such differential effects across workers of different skill levels, we consider

two examples of labor saving technologies from Jerome (1934). First, consider two key innovations in

the textile weaving industry during the early 20th century, the Barber-Colman warp-tying machine

(patent 1,115,399) and the drawing-in machine (patent 1,364,091). Both of these technologies
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benefitted skilled workers at the expense of unskilled labor. Jerome (1934) notes that, the Barber-

Colman warp-tying machine “will do the work of about 15 hand operators” while “it can be run

by one tender.” Similarly, he notes that “It is estimated that each (drawing-in machine) machine,

requiring ordinarily the attention of one operator and half the time of an assistant, replaces from 5

to 6 hand drawers-in.” Both of these patents are identified as breakthrough patents by Kelly et al.

(2020). In terms of related occupations, our methodology identifies various types of textile workers

as being the some of the most relevant.

However, not all labor-saving technologies benefit skilled labor. For instance, consider two

major innovations in the window glass industry during the late 19th century—the Colburn sheet

machine (patent 840,833) and the cylinder machine (patent 814,612). Following their introduction,

the manufacturing process for window glass switched from being hand-made to being entirely

mechanized by 1925. The displacement of skilled workers was rapid: by 1905 many hand plants

had gone out of business, wages of blowers and gatherers were reduced 40 per cent. Jerome (1934)

summarizes their impact thus: “In the quarter century following the introduction of machine blowing,

the window-glass industry, one of the last strongholds of specialized handicraft skill, has undergone

a technological revolution resulting in the almost complete disappearance of the hand branch of

the industry and the elimination of two skilled trades and one semiskilled, and also the partial

elimination of the skilled flatteners. The contest for supremacy now lies between the cylinder and the

sheet machine processes.” Both of these patents are in the top 10% of the Kelly et al. (2020) measure.

In terms of our methodology, we identify “glaziers” and “molders, shapers, and casters, except metal

and plastic” as being among the most related occupations to these two patents. Specifically, the

latter occupation, which corresponds SOC code 519195, has a sub-occupation called “glass blowers,

molders, benders, and finishers”.

These two examples illustrate that the impact of a new technology on a given worker is not

ex-ante obvious. Some technologies may replace un-skilled workers, while others may displace highly

specialized and skilled workers. Indeed as Jerome (1934) notes, glass workers displaced by the sheet

and cylinder machines in their time were considered to be members of skilled trade. Goldin and Katz

(2008, Chapter 3) provide a number of historical examples where technological advances standardized

tasks formerly performed by skilled artisans so that they could be performed by unskilled workers

(see also Acemoglu, Gancia, and Zilibotti, 2012, for a related theoretical treatment of such a process).

Further, new technologies may also generate demand for new skills—for example, the operators

of the Barber-Colman warp-tying machine—hence their long-run effects may be different than

their short-run impact. Hence, a significant part of the paper focuses on examining the correlation

between our technology exposures and subsequent labor market outcomes.
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2.3 Identifying Variation in Technology Exposures over Time

Our analysis so far delivers a measure of similarity between a given patent and a given occupation.

The next step is to construct time-series indices of technological exposure at the occupation level.

The key challenge in constructing a time-varying index lies in choosing how to appropriately quantify

the ‘degree’ of innovation that occurs at a given point in time. One possibility would be to count

the number of patents; however, this approach is unlikely to be fruitful, since not all patents are

equally important. Various approaches have been proposed, which essentially weight patents by

their forward citations (Hall, Jaffe, and Trajtenberg, 2005); estimates of their market value (Kogan,

Papanikolaou, Seru, and Stoffman, 2017); or their textual similarity to prior and subsequent patents

(Kelly et al., 2020).

For our purposes, we choose the Kelly et al. (2020) approach for two reasons: first, unlike forward

citations, their measure is available for the entirety of our sample; second, it is available for all

patents, and not just patents issued to publicly traded firms; and third, we are primarily interested

in the contribution of a patent on the technology frontier rather than their private value to their

firm.

We define our time series index of exposure of occupation i to technology at time t as

ηi,t = 1
κt

∑
j∈Γt

ρ̃i,j × 1(q̃j,t ≥ q̃p90). (12)

Our time-series index (12) aggregates our patent-occupation similarity scores across all breakthrough

patents issued in year t. Specifically, we sum over the occupation-patent similarity score ρ̃i,j across

the set of patents j ∈ Γt that are issued in year t. We restrict attention to breakthrough patents,

that is, patents whose Kelly et al. (2020) ratio of importance q̃j,t exceeds the (unconditional) 90th

percentile q̃p90.

When computing (12), we use an adjusted occupation-patent exposure metric ρ̃i,j . Specifically,

we perform the following adjustments to our raw occupation-patent exposure ρi,j from (6). First, we

remove yearly fixed effects. We do so in order to account for language and structural differences in

patent documents over time and technology areas.9 Second, we impose sparsity: after removing the

fixed effects we set all patent × occupation pairs to zero that are below the 80th percentile in fixed-

effect adjusted similarity. Last, we scale the remaining non-zero pairs such that a patent/occupation

pair at the 80th percentile of yearly adjusted similarities has a score equal to zero and the maximum

adjusted score equals one.
9Patents have become much longer and use much more technical language over the sample period, and the OCR

text recognition of very early patents is far from perfect. We also slightly modify the Kelly et al. (2020) procedure
by adjusting for the interaction between year and technology fixed effects, since some tech classes tend to have a
naturally higher ratio of forward to backward patent similarity.
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2.4 Which occupations are more exposed?

Overall, we find that over the span of our sample, service-type occupations that specialize in

person-to-person interaction scoring especially low on average exposure. In particular, Table A.3

lists the top and bottom five occupations by average exposure over the time period spanning since

1850. The most exposed occupation is titled “Inspectors, Testers, Sorters, Samplers, and Weighers”.

The top occupations tend to be those working in production and manufacturing type jobs, which are

commonly posited to be among the type of occupations most affected by new technologies. The least

exposed occupations are mental health counselors, dancers, funeral attendants, judges, and clergy,

all representing service job types that are unlikely to have the nature of their work substantially

changed by new technologies.

Related to this point, Autor and Dorn (2013) argue that middle skill occupations have been

significantly more exposed to technological innovation that low-skill workers. Using our direct

measure of technology exposure, we can verify this is indeed the case. Specifically, we can examine

how the technology exposure of occupations varies by ‘skill levels’ as proxied by wages. We obtain

information on average wages by occupation from the Current Population Survey Merged Outgoing

Rotation Groups (MORG, see Appendix A.4 for more details). Given the short time dimension of

the data (MORG starts in 1980), we focus on cross-sectional comparisons.

Figure 2 we plot exposures against average wage percentile ranks for the post-1980 period.

Consistent with Autor and Dorn (2013), we see that the most exposed occupations tend to be found

in the middle of the income distribution.

2.5 Long-run trends

We begin by documenting the types of occupation that are exposed to technological innovation,

and how these exposures have shifted over time. To this end, we group each occupation into

eight broad categories: service; sales and office; production, transportation, and material moving;

natural resources, construction, and maintenance; management, business, and financial; healthcare

practitioners; education, legal, community service, arts and media; and, computer, engineering, and

science. Within each of these groups we take the average of ηi,t and then scale across the eight

groups each year so that the total sums to one. Figure 3 plots these shares over the entire sample

(1850 to the present).

Examining Figure 3, there are two points worth noting. First, ‘blue-collar’ occupations, that is,

those related to production and construction, have been consistently more exposed to technological

progress than the others. Second, this trend has materially shifted over the recent decades, possibly

due to the Information Technology (IT) revolution. Starting around the 1950s, there has been a
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secular increase in the relative technology exposure of ‘white-collar’ occupations. This rise is most

visible in the increased exposure of computer, engineering, and science occupations. Sales and office

occupations have also seen an increased relationship with innovation, as well as management/business

occupations, though these two groups remain small in their overall exposure.

A useful way of summarizing these trends is examining the characteristics of occupations most

exposed to technology at a given point in time. We first examine what kinds of tasks are performed

by these occupations. Basing our analysis on Acemoglu and Autor (2011), we focus on four

task categories: manual tasks (routine and physical); non-routine manual (interpersonal); routine

cognitive; and non-routine cognitive.10 Let Tw(i) be an indicator function that equals 1 if occupation

i has a score in the top quintile across occupations for task w; also denote by ωi the Acemoglu

and Autor (2011) employment shares for occupation i. We then construct an index λw,t of the

technological exposure of task category w as follows:

λw,t =
∑
i

ηi,t × Tw(i)× ωi (13)

Figure 4 plots our measure of technology exposure λw,t, now separated for each of these task

categories. The top panel (Panel A) plots these series in levels; the bottom panel (Panel B) plots

their composition. The overall time-series behavior of our measures largely mimics the series of

Kelly et al. (2020)—which is not surprising, given that we use their definition of breakthrough

patents. We note three major innovation waves, lasting from 1870 to 1890; 1910 to 1930; and from

1970 to the present. The first peak corresponds to the beginning of the second industrial revolution,

which saw technological advances such as the telephone and electric lighting and improvements in

railroads. The second peak corresponds to advances in manufacturing, particularly in plastics and

chemicals, consistent with the evidence of Field (2003). The latest wave of technological progress

includes revolutions in information technology.

Importantly, we see that the first two major innovation waves were primarily related to occupa-

tions performing non-interpersonal manual tasks. By contrast, cognitive tasks are significantly less

exposed. However, starting from the 1970s, there is a shift in the relative exposure of occupations

emphasizing cognitive tasks, especially routine cognitive tasks. As a result, in the last few decades,

these occupations are almost as exposed to innovation as occupations emphasizing manual tasks.

This pattern is driven by information technology revolution that has led to the modern digitalization

of the workplace. Occupations that relate to these type of innovations have a distinctly different
10Because the routine manual and non-routine manual (physical) task scores are highly correlated and also move

similarly with technological exposure, we group these two task types into one category by taking the average of the
two scores. For similar reasons we take the average of non-routine cognitive (analytical) and non-routine cognitive
(interpersonal) to get a non-routine cognitive score.
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task profile than the most prevalent technologies of past innovation waves. That said, even in the

recent period, occupations emphasizing interpersonal tasks remain the least exposed to technological

change. This pattern is consistent with the findings of Autor and Dorn (2013), who show that

service occupations have increased in importance at the expense of occupations heavily exposed to

automation, and also Deming (2017), who documents an increased importance of social skills in the

labor market.

We next separate occupations by their education requirements. Specifically, we compute the

share of workers in that occupation who have either completed a 4-year college degree or have

attained a high-school diploma or lower in in a given year. For this analysis we crosswalk occupations

to David Dorn’s revised Census occ1990 level. We impute college grad and above/high school

or below occupation shares for years between Census decades by linearly interpolating between

the nearest available Census years and similarly interpolate occupational employment shares ωi,t
between Census years. We then let Ss,t(i) be an indicator for whether occupation i is in the top

quintile of the share of workers in education category s in year t. Due to data availability, we begin

our analysis in 1950. We define the education exposure index ζs,t similarly to λw,t:

ζs,t =
∑
i

ηi,t × Ss,t(i)× ωi,t (14)

Figure 5 presents our results. For most of the sample, we see that occupations requiring a

college degree are significantly less exposed to innovation than occupations requiring a lower level of

education. However, and consistent with the discussion above, we see that this pattern is shifting in

the recent decades: towards the end of the sample, the difference in technology exposure between

occupations requiring a college degree with those that do not has shrunk dramatically. This is

especially evident in panel B of Figure 5 where we plot the composition rather than the levels of

technological exposure. It’s also important to note that this pattern is not driven by the increase

in the share of workers with a college degree, since we assign occupations to the high education

group based on their ranking in the cross-sectional distribution of occupational college grad shares.

Rather, this pattern is driven by compositional shifts in the types of technologies being introduced,

with an increasing share of technologies being targeted towards the tasks performed by relatively

more educated occupations.

3 Technology Shocks and Labor Market Outcomes

In Section 1 we documented that breakthrough innovations are on average associated with increases

in measured productivity and declines in labor share. Now, armed with an additional source
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of cross-sectional variation—differences in occupation exposure to specific technologies—we can

examine a more direct link between technological progress and outcomes for specific workers.

We begin by focusing on group (i.e. occupation-level) outcomes in Section 3.1. The advantage of

doing so is that we can examine the relation between our measure and labor market outcomes over a

long period of time. The disadvantage of doing so is that patterns in some occupation-level outcomes,

specifically wages, can mask important worker-level heterogeneity within the occupation. Thus, in

Section 3.2 we focus on outcomes of individual workers using administrative data on worker earnings.

Focusing on individual workers allows us to more closely trace the correlation between innovation

and individual outcomes, while also enabling us to condition on certain observable characteristics.

The disadvantage of the Census administrative data is that it is available only since the mid-1990s.

3.1 Occupation-level Evidence from repeated cross-sections

We begin by examining the relation between innovation and subsequent growth in the employment

shares and average wage earnings of exposed occupations.

Data

The availability of public Census data allows us to examine employment outcomes over a long

period of time (1850 to today). The Census surveys consist of repeated cross-sectional observations.

Important for our purposes they contain information on occupations, which we can link to our

innovation measure ηi,t constructed in equation (12). Specifically, we use the 1950 Census occupation

definition for pre-1950 Census years since the more updated 1990 Census classification scheme is only

available in post-1950 Census years. We make use of the 1990 Census occupation classifications for

the years they are available. We then crosswalk Census occupations to the David Dorn occ1990dd

classification scheme using the crosswalk files provided on his website and aggregate our measure

ηi,t to the occ1990dd-level by averaging across 6-digit SOC codes within an occ1990dd code. This

results in a Census-year by occ1990dd panel of occupation employment shares. Census records for

the year 1890 were destroyed in a fire, and so the employment growth observations for the 20-year

horizon in 1870 or for the 10-year horizon in 1880 are not available. The final dataset consists of an

unbalanced panel of occupation–Census year employment shares and spans the Census years from

1850 to 2010. Appendix A.4 provides additional details.

In addition, we use more recent data from the Current Population Survey Merged Outgoing

Rotation Groups (MORG) which provides data on both wages and employment outcomes for the

post-1980 period. We use the data to create a balanced panel of wage earnings and employment

growth at the level of occupation and calendar year. We obtain the cleaned MORG extracts provided
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by the Center for Economic Policy Research (CEPR). In particular, we use the “wage3” variable

that combines the hourly earnings for hourly workers and non-hourly workers, adjusts for top-coding

using a lognormal imputation, and is constructed to match the NBERâĂŹs recommendation for the

most consistent hourly wage series from 1979 to the present.

Technology exposure and employment (1850–present)

We examine employment outcomes using the following specification,

1
k

(
log Yi,t+k − log Yi,t

)
= α0 + αt + β(k) ηi,t + λYi,t + εi,t, k = 10, 20 years. (15)

The main dependent variable Yi,t is the employment share in total non-farm employment. Obser-

vations are weighted by the employment share of the given occupation and standard errors are

clustered by occupation. As before, ηi,t is normalized to unit standard deviation. All specifications

include time fixed effects; depending on the specification, we include controls for the lagged 10-year

employment growth rate.

Panel A of Table 1 presents our findings. We note that there is a strong and statistically significant

negative correlation between our innovation measure η and subsequent changes in employment at

the occupation level. The magnitudes are significant: a one-standard deviation increase in ηi,t is

associated with a 0.41% annualized decline in employment over the next 10 years and a 0.70%

percent decrease in employment over the next 20 years.

We next allow the slope coefficients β to vary across Census years, focusing on horizons of k = 20

years. Figure 7 plots the point estimates of β for each Census year along with the 90% confidence

intervals based on standard errors clustered by occupation. Examining the figure, we see that the

point estimates are negative for all but the 1860 and 1940 Censuses, and are significant in 1880,

1910, 1920, 1950, 1970, 1980, and 1990. The magnitude of this correlation is also fairly stable over

time, implying that occupations that are exposed to innovation have had consistently experienced

employment declines over the entire 150 year period.11

One potential concern with these findings is that they reflect industry trends. To separate

our findings from industry-level sources of variation, we next aggregate the Census data at the

occupation by industry level over time. We use the 1950 Census industry designations, which are

available the furthest back in time. Because Census industry codes are unreliable before 1910 we

start our analysis using the data from the 1910 Census. We therefore estimate a slightly modified
11In 1930, John Maynard Keynes wrote: “We are being afflicted with a new disease of technological unemploy-

ment...due to our discovery of means of economising the use of labor outrunning the pace at which we can find new
uses for labor." (Keynes, 1930). Indeed, the 1920–40 period corresponded with a large innovation wave that was
associated significant declines in employment for occupations whose tasks were related to those innovations.
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version of equation (15),

1
k

(
log Yi,j,t+k)− log Yi,j,t

)
= α0 + β(k)ηi,t + δZt,j + εi,j,t, k = 10, 20 years. (16)

The dependent variable Yi,j,t now represent the share of total non-farm employment for occupation

i in industry j. The vector of controls Zt,j now contains time, or industry–time dummies depending

on the specification, as well as lagged values of the dependent variable at the industry–occupation

cell. The inclusion of industry–time allows us to isolate our findings from industry-specific trends in

the sample.

Examining Panel B of Table 1, we see that the estimated slope coefficient on our innovation

measure is consistently negative and economically and statistically significant. Overall, a one-

standard deviation increase in ηi,t is associated with a 0.60% to 0.89% decline in employment

over the next 20-year horizon. The fact that this negative relation is essentially unaffected by the

inclusion of industry-time fixed effects illustrates that our findings are not merely driven by the

decline of certain industries which happen to employ workers with high technology exposure. Rather,

much of the negative employment effects exist within, rather than between, industries. That said,

the fact that the coefficients do attenuate slightly when including industry fixed effects indicates that

high ηi,t occupations tend to be employed in industries that have experienced overall employment

declines.

Technology exposure, employment, and wages (1980–present)

We next turn our attention to the post-1980 period. We estimate the following specification

1
k

(
log Yi,t+k)− log Yi,t

)
= α+ β(k)ηi,t + δZi,t + εi,t, k = 5 . . . 20 years. (17)

Here, Yi,t represents wage earnings or employment for a given occupationi in calendar year t. The

vector of controls Zi,t includes three lagged one-year growth rates of the dependent variable and

time fixed effects. As before, ηi,t is normalized to a unit standard deviation.

Figure 8 plots the estimated coefficients β along with 90% confidence intervals. We note that

the responses for both wages and employment are strongly negative for all horizons. The point

estimates are both economically and statistically significant and are comparable across horizons,

suggesting these are permanent effects. Focusing on employment changes, a one-standard deviation

increase in our technology exposure is associated with approximately a 1.1% annualized decline in

occupation employment over the next five to twenty years. Similarly, our innovation measure also

predicts a significant decline in wage earnings: a one-standard deviation increase in ηi,t is followed
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by a decline in average wage earnings of approximately 0.2% to 0.3% per year over the same period.

Comparing the magnitude of employment declines in the MORG sample to the long-run (Census)

results in Table 1 above, we note that the coefficient magnitudes are largely comparable. This is

noteworthy in lieu of the fact the nature of breakthrough innovations in the post-1980 period is

somewhat distinct than in the pre-1980 sample. As we saw in Figure 4, recent innovations are

significantly more related to occupations performing routine cognitive tasks.

Recent work has argued that recessions are periods of technological transformation and thus ac-

celerated automation of routine jobs (Jaimovich and Siu, 2018; Kopytov, Roussanov, and Taschereau-

Dumouchel, 2018; Zhang, 2019). Consistent with this view, we next provide some direct evidence

using our measure of technology exposure. In Figure 9 we see that occupations which were in the

top quintile of ηi,t in 1985 experienced stark declines in employment around the 1991, 2001, and

2007-2008 recessions, with a flatter but slightly declining profile in between recessions. Meanwhile,

assigning occupations into the top quintile of routine-task intensity in 1985, we do see a persistent

decline over the time period, but a much less pronounced pattern around recessions. This pattern is

consistent with models of innovation-related job displacement where the opportunity to replace labor

with an automation technology is a real option for firms. For example, Zhang (2019) shows that in

a production based asset pricing model where firms choose to invest in labor-saving technologies,

they choose to exercise this option when expected cash flows are temporarily low. Therefore the

pattern exhibited in Figure 9 is consistent with employers replacing high ηi,t workers with capital

when the exercise value for doing so is high.

3.2 Individual-level evidence from panel administrative earnings data

Next, we turn our attention to individual worker outcomes. Doing so allows us to not only more

directly link innovation to specific worker outcomes, but it also allows us to examine how this relation

varies with observable worker characteristics. In particular, the detailed nature of administrative

data allows us to examine how the relation between innovation and worker outcomes varies with

proxies for worker skill, such as education or past earnings.

Data

We use a random sample of individual workers tracked by the Current Population Survey (CPS) and

their associated Detailed Earnings Records from the Census—which contains their W2 tax income.

The CPS includes information on occupation as well as demographic information such as age and

gender. We limit the sample to individuals who are older than 25 and younger than 55 years old and

to periods where the CPS interview date is less than 5 years old so that the occupation information
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is relatively recent.

We construct a measure of forward looking wage earnings growth following Autor, Dorn, Hanson,

and Song (2014); Guvenen, Ozkan, and Song (2014); Kogan et al. (2020)

gi,t:t+h ≡ wit+1,t+h − wit−2,t. (18)

where wit+1,t+h refers to average age-adjusted earnings over the period, defined as

wit,t+h ≡ log
(∑h

j=0 W-2 earningsi,t+j∑k
j=0D(agei,t+j)

)
. (19)

refers to worker earnings net of life cycle effects. We focus on horizons of h = 3, 5, and 10 years.

Appendix A.5 provides more details on the construction of the data and the patch to patent

information.

Given that the administrative data sample has a shorter time dimension and a larger cross-section

than our other data, we make some modifications to our construction of our worker technology

exposure measure η. First, we identify important patents based on their 5-year, as opposed to

10-year forward similarity. This allows us to extend the sample by five additional years, which helps

with the short length of the sample. Further, to fully take advantage of the larger cross-section, we

allow our baseline innovation exposure measure η to also vary by industry, by restricting attention to

patents issued to firms in the same 4-digit NAICS industry as the worker. Letting j index patents as

before; Γk,t denote the set of patents issued in industry k in year t; o(i) the occupation of individual

i; and k(i, t) the industry of individual i in year t, we redefine our time series index of exposure of

worker i to technology at time t as

ηi,t = 1
κt

∑
j∈Γk(i,t),t

ρ̃o(i),j × 1(q̃j,t ≥ q̃p90). (20)

In brief, our technology exposure metric (20) is largely the same as before, except that we now focus

only on breakthrough patents in the industry in which worker i is currently employed—that is, ηi,t
defined in (20) now varies by occupation, industry, and year instead of just occupation and year

as (12).

Given these restrictions imposed by the Census-CPS merged file and the nature of our innovation

data, we are left with approximately 1.2 million person-year observations spanning the period from

1988 to 2016. In terms of demographics, approximately 58% of the sample is male and 46% of the

observations correspond to workers with a college degree. Table 2 provides more details on the

distribution of age and worker earnings: the median worker in the sample is 41 years old and earns
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approximately $58k per year. The distribution of earnings is rather skewed however: the average is

equal to $75k while the 5th and 95th percentiles are equal to $14k and $172k, respectively. The

last set of rows of Table 2 summarize the distribution of our (age-adjusted) cumulative earnings

growth (18). At a horizon of h = 5 years, the median is equal to 0.011 while the mean is -0.063;

given that (18) corresponds to a log difference, the large dispersion in earnings induces the mean

growth rate to be negative due to Jensen’s inequality. That said, the distribution is also highly

negatively skewed: the 5th percentile is equal to -0.968 log points while the 95th percentile is equal

to 0.574.

An illustrative example

Before examining the correlation between our technology measure and subsequent wage growth,

it is informative to look at particular examples. We choose the rise of e-commerce—and more

specifically the automatic fulfillment of retail purchase orders. Advances in information technology

and telecommunications have obviated the need for manual processing of customer orders. Using our

patent-based indicators we can identify the 1996 to 2002 period as a period of significant innovation

related to the tasks performed by order-fulfillment clerks. Examples of such breakthrough innovations

early on include U.S. Patent 5,696,906 for “Telecommunication user account management system

and method”; Patent 5,592,560 for “Method and system for building a database and performing

marketing based upon prior shopping history”; or Patent 5,628,004 for “System for managing

database of communication of recipients”. Appendix Table A.9 contains a longer list—the top 10

most related breakthrough patents to order fulfillment clerks issued in the 1997 to 2000 period.

To study the impact of these breakthroughs on worker earnings, Figure 10 contrasts labor market

outcomes for order fulfillment clerks versus a set of workers in two related occupations unlikely to

be affected by these innovations: personnel and library clerks.12 The top panel of Figure 10 plots

the average real wage (in 2015 US dollars) differential across the two sets of workers—normalized to

be zero in 1997. The bottom panel plots the difference in average technology exposure from (20)

for workers employed as order clerks across industries relative to workers employed as personnel or

library clerks.

Examining the top panel, we note that relative wage trends for the two occupations were fairly

flat prior to 1997. However, since then they begin to systematically diverge. The bottom panel

shows that this divergence coincided with significant breakthrough innovations that were related

more to order than library clerks. Beginning in 1996, there is a sustained increase in (relative)
12The DOT indicates that an order clerk ‘Processes orders for material or merchandise received by mail, telephone,

or personally from customer or company employee, manually or using computer or calculating machine...informs
customer of any information needed...using mail or telephone. Writes or types order form, or enters data into computer,
to determine total cost for customer. Records or files copy of orders."
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innovation that persists for several years. By 2007, order clerks’ average annual wages had declined

by nearly $30,000 relative to personnel/library clerks.

Our preferred interpretation of the patterns in Figure 10 is that improvements in the automatic

processing of orders displaced workers whose primary task was to fulfill orders. Naturally, we

cannot exclude the possibility that these patterns reflect industry- or occupation-specific trends.

Fortunately, our empirical design outlined below allows us to control for both industry- as well as

occupation-specific year fixed effects.

Innovation and worker earnings growth

We estimate the following specification,

gi,t:t+h = α+ β(h) ηi,t + δZi,t + εi,t. (21)

Here, i now refers to a particular worker; as such, the left hand side represents the growth in her

average earnings over the next h years compares to the last three. The main variable of interest ηi,t
now refers to the workers’ technology exposure, specifically, the level of breakthrough innovations

that are closely related to her occupation that are filed by firms in the same industry (based on

NAICS 4-digit codes) as the worker. We examine earnings responses over the next h = 3, 5 and 10

years. The vector Z includes a rich set of controls that aim to soak up ex-ante worker heterogeneity.

Specifically, we include various combinations of year, occupation and industry fixed effects—our

most conservative specification interacts the latter two with calendar year to account for occupation-

or industry-specific time trends. In addition, we include flexible non-parametric controls for worker

age and past worker earnings as well as recent earnings growth rates.13 Standard errors are clustered

at the industry (NAICS 4-digit) level.

Table 3 summarizes our findings for the average worker in our sample. Overall, we find that

workers’ technology exposure is negatively related to their subsequent earnings growth. Panel A

reports the estimated slope coefficients β(h) for horizons of h = 3, 5, 10 years; different columns

correspond to different fixed effect combinations. The magnitudes are both economically and

statistically significant. Focusing on the 5-year horizon and the most conservative specification that

includes both industry-year and occupation-year fixed effects, we see that a one standard deviation

increase in innovation is associated with a 0.013 log point decline in average worker earnings over
13We construct controls for worker age and lagged earnings wit−4,t by linearly interpolating between 3rd degree

Chebyshev polynomials in workers’ lagged income quantiles within an industry-age bin at 10-year age intervals. In
addition, to soak up some potential variation related to potential mean-reversion in earnings (which could be the
case following large transitory shocks), we also include 3rd degree Chebyshev polynomials in workers’ lagged income
growth rate percentiles, and we allow these coefficients to differ by gender as well as past income levels based on five
gender-specific bins formed based upon a worker’s rank relative to her peers in the same industry and occupation.
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the next five years. These magnitudes increase with the horizon h, ranging from 0.011 to a 0.014

log point decline in average earnings at horizons of three and ten years, respectively.14

In brief, Panel A shows that the average effect of technology exposure on worker earnings is

negative. This negative average effect, however, likely masks considerable heterogeneity in ex-

post worker outcomes. To that end, in Panel B we next examine whether technology exposure is

associated with increases in the second-moment of earnings growth: we estimate a modified version

of (21), in which now the dependent variable is the absolute value of earnings growth. We see that

technology exposure is associated with an increase in the second moment: the absolute value of

earnings growth (21) increases by approximately 0.5 percentage points in response to a one-standard

deviation increase in ηi,t, which corresponds to approximately a 3% increase relative to the sample

median value of the dependent variable (0.157).

Similarly, Panel C examines the increase in the skewness of the earnings distribution, or

equivalently the extent to which the negative average effects documented in Panel A are concentrated

in a subset of workers. Specifically, we construct indicators for whether a given worker’s income

growth over a given horizon falls in the bottom 10th percentile of all our observations within a given

year. Focusing on the same specification, we see that an increase in a worker’s technology exposure

is associated an economically significant increase in the likelihood of large earnings losses for affected

workers: a one-standard deviation increase in ηi,t is associated with a 0.4 percentage point increase

in the likelihood that a worker’s subsequent earnings growth is in the bottom 10th percentile.

Our findings in this section reinforce our findings in Section (3.1) that technology is associated

with occupation-level declines in employment and wages. By tracking the earnings growth of

individual workers, we can ensure that our findings on worker earnings are not driven by selection

across occupations. In addition, individual-level data allows us to paint a more complete picture of

how earnings losses are distributed across workers, even at a particular industry–occupation cell

at a point in time. Building on this idea, the next section examines how these findings vary with

worker characteristics.

Innovation, worker earnings and ex-ante heterogeneity

We next allow the effects to vary by observable worker characteristics. In terms of the heterogeneous

effects of technological progress across workers, existing work has emphasized that (a) much of

technological change is skill biased (see, e.g. Goldin and Katz, 2008, for a textbook reference); (b)

an important component of human capital is likely specific to a technological vintage (Chari and

Hopenhayn, 1991; Jovanovic and Nyarko, 1996; Violante, 2002). Accordingly, we focus on education
14We find no meaningful differences across genders: over the next five years, on average men experience a 0.013 log

point decline and women experience a 0.011 log point decline.
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and prior income as common proxies for worker skill; allowing the impact of technology to vary

by worker age helps tease out the effect of vintage-specific human capital. In what follows, we

re-estimate equation (21) and now allow the slope coefficient β(h) to vary across worker sub-groups.

For brevity we focus on the most conservative specification that includes both industry-year and

occupation-year fixed effects. Appendix Tables A.11 to A.12 illustrate that results are similar across

alternate specifications.

Table 4 examines how the effect of technology on worker earnings vary with education, specifically

on whether the worker has a college degree. Focusing on mean growth rates across horizons—columns

(1) to (3)—we see that an increase in technology exposure ηi,t is associated with an economically and

statistically significant decline in average earnings growth for both college and non-college educated

workers. If we interpret education as a proxy for skill, the fact that earnings decline for both groups

is somewhat at odds with the canonical model of skill-based technical change. That said, we do

find that non-college workers experience a somewhat larger decline in average earnings growth than

workers with a college degree, with the difference being marginally statistically significant (p-values

range from 0.043 to 0.11 across horizons). Columns (4) and (5) show that both groups experience

a similar increase in their second moment of earnings growth, while non-college educated workers

experience a somewhat larger increase in the probability of large earnings declines than college

educated workers (0.48 vs 0.35 percentage points).

Table 5 examines how the response of worker earnings growth to ηi,t varies by prior income. In

terms of point estimates, we find a U-shaped pattern: a given increase in a worker’s technology

exposure ηi,t has the largest impact on the earnings growth of not only the least- but also the

highest-paid workers (relative to their peers in the same occupation and industry). These estimates

are noisy: we cannot reject the null that the response of earnings growth of workers at the bottom

quartile is equal to the responses of workers in the 25th to 95th percentile. However, the response of

the most-highly paid workers is both statistically as well as economically distinct from the workers

in the middle group: a one-standard deviation increase in technology exposure is associated with a

0.025 log point decline in their average earnings growth—approximately twice as large as the effect

on the average worker.

At face value, these facts seem at odds with the canonical model of skill-biased technical change:

if technology is complementary to the labor input of skilled workers, to the extent that prior income

is related to worker skill, one would expect to see that top workers should experience an increase in

their average earnings (or at the very least a smaller decline). By contrast, the opposite pattern

obtains. Comparing across columns (1) to (3) we see that these patterns are quantitatively similar

across horizons, suggesting that these effects are highly persistent.

One potential reconciliation of the patterns in Table 5 with the standard view of technology-skill
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complementarity is allowing for vintage-specific human capital. That is, skill is not an immutable

characteristic of the worker; it is the result of experience and learning by operating a particular

technology. When new technologies are introduced, some of that accumulated knowledge becomes

obsolete: skilled workers in the old technology need not remain skilled in the new. If that is the

case, we would expect skilled workers to face greater earnings risk in response to increased rate

of technological innovation due to the possibility of skill displacement. Consistent with this view

columns (4) and (5) of Table 5 show that top earners face significantly greater labor income risk

than the average worker in response to an increase in their technology exposure. Focusing on the

last column, a one-standard deviation increase in ηi,t is associated with a 1.26 percentage point

increase that these workers experience a large earnings decline (earnings growth in the bottom

10-the percentile) which is approximately three times higher than the average worker.

Table 6 provides additional support to the idea of vintage-specific human capital by examining

how these effects vary with worker age. Older workers are both more likely to have accumulated

skills in existing technology and also less likely to be able to become familiar with new production

methods. Accordingly, we see that older workers (those in the 45 to 55 range) experience significantly

greater declines in earnings growth (0.02 to 0.025 log points across horizons) relative to workers

aged 35–45 (0.9 to 1.4 log point decline) or 25–35 (0.4 to 0.9 log point decline). Columns (4) and

(5) similarly show that earnings risk in response to an increase in technology exposure is increasing

in age: a one-standard deviation increase in ηi,t is associated with a 0.9 percentage point increase

in the likelihood of a large earnings decline for workers aged 45–55, compared to a 0.2 percentage

point increase for younger workers.

Discussion

In brief, we find that a given improvement in technology leads to lower earnings growth across

all workers. These patterns, together with the positive correlation to industry productivity and

the decline in the labor share documented in Section 1 is consistent with the view that most of

the breakthrough innovations in the sample are labor-saving, that is, they partly replace tasks

performed by workers. The standard view is that increases in automation are more likely to affect

low-skill workers, since low-productivity workers are likely to be replaced first. Some of our findings

are consistent with this view: we find some evidence that workers without a college degree and the

lowest-paid workers experience larger than average earnings declines in response to technological

innovation (though the latter difference is not statistically significant).

However, some of our findings are harder to reconcile with a view that skill is an immutable

characteristic of the worker. Workers that are more highly paid relative to their peers in the same

occupation and industry experience on average significantly larger earnings declines than the average
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worker; further, our findings suggest that much of these average decrease reflects an increase in

the probability of large earnings losses as opposed to a small consistent decline in earnings. Put

differently, the distribution of earnings losses is heterogenous: a subset of skilled workers experience

large earnings declines rather than the entire group experiencing small declines.

This pattern, together with the increased earnings response of older workers suggests a role of

vintage-specific human capital, or equivalently for technology making certain worker skills obsolete.

The model in the next Section 4 formalizes and quantifies this idea more fully. That said, one caveat

in interpreting these patterns is that the period covered by the Census-CPS administrative data

coincides with the rise of very specific technologies, namely ICT. Thus, we should be careful when

extrapolate these findings to other periods of rapid technological progress.

3.3 Additional Results and Robustness Checks

Here we discuss a number of additional results that frame our work to the existing literature and

explore the extent to which our measure underestimates the degree of labor-displacive innovations.

Comparison to Existing Measures of Exposure to Technical Change

Our work is not the first to construct occupation-level measures of exposure to technological change

(Autor and Dorn, 2013; Webb, 2019). A key advantage of our measure relative to existing work is that

it also incorporates time-series variation. That said, it is instructive to explore the extent to which it

contains additional information regarding cross-sectional differences in technology exposures. Here,

we explore this question, and compare the performance of our technology measure in predicting wage

and employment declines relative to the routine-task intensity and the measure of occupation-level

offshorability from Autor and Dorn (2013), and the Webb (2019) measures of exposure to robotics

or software.

To compare our different approaches, we estimate a long-difference cross-sectional specification

similar to Webb (2019) as follows

1
k

(
log Yi,t+T )− log Yi,t

)
= α+ αj + βηi,1980 + δXi + εi,j (22)

Here i indexes occupations and j indexes industries. In estimating (22), we combine information

on wages and employment in the 1980 Census and the 2012 ACS. In particular, we use the 1980

Census and 2012 ACS data from Deming (2017), which are reported at the occupation by industry

by education level, and aggregate the data to industry by occupation. Thus, the dependent variable

denotes either the log change in employment or the change in log wages over the 1980-2012 time

period. We include industry fixed effects αj to account for industry specific shocks that may be
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correlated with occupational outcomes. Controls Xi include occupation employment share in 1980,

occupation log wage in 1980, three indicators for the occupations education level in 1980, the

routine-task intensity and the measure of occupation-level offshorability from Autor and Dorn

(2013), and the Webb (2019) measures of exposure to robotics or software patents, depending on

the specification. We weight observations by the employment share in 1980 and cluster standard

errors by industry.

Tables 9 reports our findings for employment (Panel A) and wages (Panel B). Examining the

first row of each panel, we see that the point estimates (and statistical significance) of β are

essentially unaffected by including the Autor and Dorn (2013) or Webb (2019) measures. We

conclude that cross-sectional differences in ηi,t contain independent information relative to these

alternate cross-sectional metrics.

Alternative approaches to measuring labor displacement

Our technology exposure measure is constructed based on the similarity between patents and tasks

performed by a specific occupation. Ex-ante, it is not entirely obvious whether a high level of

similarity is likely to capture complementarity or substitution between the technology and the

tasks performed by labor. Even though we are finding a consistently negative relation between our

technology exposure measure and subsequent labor market outcomes, it is possible these effects are

muted because our measure mixing labor-saving and labor-enhancing innovations.

To explore this possibility, we next compare the performance of our measure to a purely statistical

predictor that is calibrated to predict employment declines in-sample. To do so, we leverage recent

advances in topic modeling to construct a composite predictor from patent text whose purpose is to

maximize the in-sample predictability of employment declines. This measure is akin to a principal

component; it has no straightforward economic interpretation, but it rather provides a statistical

upper bound on how large the labor-displacive effects could be on a factor that is constructed from

the text of breakthrough patents.15 The correlation between our baseline measure ηi,t and the

statistical predictor constructed to represent exposure to labor-saving technologies is approximately

73 percent.

We then compare the performance of our baseline measure based on patent-task similarity to the

in-sample performance of this statistical factor in the wage and employment regressions in Figure
15We build on the approach proposed by Cong, Liang, and Zhang (2019), which is well-suited to prediction exercises

using large-scale textual data. In brief, this approach can be summarized as follows. We first extract the 500 most
important common factors (topics) from the text of breakthrough patents using the approach of Cong et al. (2019)
and the vector representations of word embedings discussed in Section 2. We then use these 500 textual factors to
form a single predictor that is optimized to predict occupation declines in-sample. To do so, we examine the univariate
performance of each factor in predicting employment declines, and then form a linear combination (the first principal
component) of the predictors that are statistically significant negative predictors at the 5%. We also construct a
labor-enhancing factor using the converse exercise. Appendix ?? describes the procedure in detail.
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8—which can be viewed as an upper bound in the ability of patent text to predict employment

and wages. We find that the performance of our baseline measure is close to this upper bound:

the annualized employment and wage declines predicted by this statistical displacement factor are

1.25% and 0.25%, respectively—compared to 1.12% and 0.20% for our technology measure based

on patent-task similarity. Appendix ?? provides more details. We conclude that our technology

measure based on patent-task similarity primarily captures labor-saving innovations.

Robustness

We perform several checks to explore the extent to which our findings are specific to a particular

period. Appendix Table A.5 shows that our findings on the long-run negative relation between

technology exposure and employment at the occupation level are robust across sub-samples. That

said, Appendix Table A.6 shows that this negative relation is primarily driven by innovation waves:

we separate the sample into two sub-samples, where we define as innovation waves the 20 year

periods beginning in years 1880, 1910, 1920, and 1980, 1990—with the remaining years representing

non-innovation wave periods (for a discussion of the 1920s, see e.g. Field, 2003).

Further, we verify the robustness of our findings to alternative specifications. Appendix Ta-

bles A.11 through A.13 show that our results on heterogenous responses by education, age, and

prior income are largely robust to different combinations of fixed effects and horizons over which we

measure worker earnings.

That said, one particular caveat in interpreting the heterogenous patterns we uncover using the

Census-CPS administrative data is that they are estimated during a very specific time period which

coincides with the rise of very specific technologies (i.e. ICT). The extent to which similar patterns

obtain more broadly during earlier periods is an open question. As a step towards this direction,

we re-estimate our long-run employment results and allow the coefficient to vary by worker age

(the only variable consistently reported since the 1850s in the population sensus). In particular, we

re-estimate 15 but now add a second panel dimension, worker age. That is, the unit of analysis

is not worker occupation-age groups and when we compute employment growth rates we track a

particular cohort. For instance, to compute the 20-year growth rate in employment in 1900 for

workers aged 20–29 in occupation i, we compare it to the employment of 40–49 year old workers in

occupation i in 1920.

Table A.14 reports our findings. Panel A focuses on the full sample. We see that the employment

growth of older workers in a specific occupation is significantly more exposed than the employment

growth of younger workers (difference has a p-value of 0.015). In terms of magnitudes, a one-standard

deviation increase in technology exposure is followed by a 1.1% annual decline in employment for

older workers over the next twenty years, compared to a 0.7% annual decline for younger workers.
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However, Panel B shows that this pattern is largely driven by the latter part of the sample.

Specifically, there are no differences in employment outcomes across age groups during the 1850–

1920 period. In the 1930 to 1960 period, there is some evidence that older workers are significantly

more exposed, but the results are too noisy to infer meaningful differences (p-value of 0.13). By

contrast, focusing on the post-1970 period, the difference is between younger and older workers

becomes larger and statistically significant. We conclude that we cannot rule out the possibility

that our worker heterogeneity results are somewhat specific to the ICT revolution: it is entirely

possible that older workers were significantly more displaced than younger workers by ICT.

4 Model

Here we provide a model that features skill-biased technological change and allows for skill displace-

ment. The model contains a continuum of workers who supply high- and low-skill labor inputs.

Consistent with the literature, the output of the high-skill labor input is more complementary to

technology than the output of the low-skill input. As a result, improvements in technology lead to

an increase in the wages of high-skill workers relative to the wages of low-skill workers. This is a

feature of the standard model.

We extend the model to allow for skill displacement. In particular, improvements in technology

may render some of workers’ skills obsolete—a specific worker may lose a part of her skill when the

technology frontier improves. As a result, even though wages of skilled workers rise in response to

technology, an incumbent skilled worker may experience a decline in wages.

4.1 Setup

We model the output of a given industry. Output is produced by three factors of production:

low-skilled labor L, high-skilled labor H, and intangible capital (technology) ξ. For simplicity, we

will abstract from labor growth and model output per capita Y as

Yt =
[
µ
(
Ht

)σ
+ (1− µ)

(
λ
(
ξt
)ρ

+ (1− λ)
(
Lt
)ρ)σ/ρ]1/σ

(23)

Here, ρ denotes the elasticity of substitution between technology and unskilled labor and σ denotes

the elasticity of substitution between skilled labor and the composite output of technology and

unskilled labor.16 Since the total mass of workers is normalized to one, equation (23) also refers to
16In setting up (23), we have included technology and unskilled labor in the inner nest, and skilled labor in the

outer nest. This is in contrast to the formulation in Krusell et al. (2000); Eisfeldt, Falato, and Xiaolan (2021), but
note that the comparison with these two papers is imperfect, since ξ denotes intangible capital (technology) rather
than physical equipment (machines).
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labor productivity (output per worker).

The factor ξ is the stock of intangible capital/knowledge embodying the technology used for

producing output Y , similar in spirit to Acemoglu and Restrepo (2018). When we map our empirical

analysis to the model, we will interpret our technology exposure metric ηi,t as a shock to ξ, which

however affects only a subset of workers involved in the production of Y—the model equivalent

to ‘occupations’, described below. Keeping with the literature, we expect technology to be more

complementary to skilled labor relative to unskilled labor, so we will impose the condition that,

in relative terms, shifts in technology are more complementary to skilled than unskilled labor, or

equivalently that

σ < ρ < 1. (24)

Put differently, technology ξ is a better substitute for unskilled rather than skilled labor.

Technology ξ evolves exogenously according to

dξt = −g ξt dt+ κ dNt. (25)

Technology improves according to the process Nt whose increments are Poisson with arrival rate

ω dt. Recall that we have set up output in per capita terms. As such, the negative drift term in

equation (25) reflects the fact that ξ also a per-capita quantity and population grows at rate g.

Given (25), the level of ξ is stationary with a long-run mean equal to κω/g.

Workers are heterogenous along two dimensions. In particular, there is a unit mass of workers

differentiated by their type θ ∈ [0, 1], which determines their endowment of high- and low-skill labor

inputs; workers also vary in their ability to acquire new skills s = {l, h}. Specifically, each worker

can provide θ units of skilled labor H and 1− θ units of unskilled labor L. As a result, the total

supply of skilled labor as a share of population is equal to

Ht =
∫ 1

0
θ pt(θ) dθ, (26)

where pt(θ) is the measure of workers of skill level θ at time t. Since we normalize the total supply

of labor to one,

Lt = 1−Ht. (27)

In addition, workers vary in their ability to acquire new skills—that is, increase their skill level θ.

The share of workers who cannot acquire new skills sl can produce only in the low-skill task so

θ = 0. The remaining share of workers sh = 1− sl, have skill θ ∈ (θ, 1) that evolves over time due
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to learning by doing and technological displacement according to

dθi,t = mθi,t dMi,t − h θi,t di,t dNt, (28)

Here, dMi,t is a Poisson jump with arrival rate φdt that reflects the stochastic acquisition of new

expertise. Since we limit θ ∈ (θ, 1) for these workers, we impose reflecting boundaries at θ and 1.

Importantly, the last term in equation (28) captures the displacive effect of the arrival of new

technologies (dNt = 1). There is a stochastic element in how technology improvements affect

workers: this uncertainty is captured by di,t, which is a random variable with support on the unit

interval and is independent of θit. For now, we assume that di,t i.i.d. distributed across agents and

follows a binomial distribution d ∈ {0, 1} with Prob(d = 1) = α. More generally, we could allow

the distribution of di to vary with certain worker characteristics such as age or education. Affected

workers experience a proportional loss in their human capital (skill) by a factor h. Last, workers

of each type die at Poisson rate δ dt and are replaced by newborn skilled workers with either zero

skill (θ = 0) or the minimum level of skill (θ = θ) for skilled workers with probabilities sl and 1− sl
respectively.17

Given our assumptions (26)–(28), the aggregate supply of skilled labor Ht increases with

learning, decreases as skilled older workers are replaced with unskilled young workers, and decreases

temporarily following periods of rapid technological progress. The latter effect captures the idea

that technological improvements may be associated with lower output in the short run as agents in

their economy need to upgrade their skills to fully take advantage of new innovations—similar in

spirit to Brynjolfsson, Rock, and Syverson (2018).

The current wage of an individual worker with skill level θi,t is equal to

wi,t = WL,t + θi,t (WH,t −WL,t) . (29)

In equilibrium WH,t and WL,t are equal to the marginal product of skilled and unskilled labor,

respectively

WH,t = ∂Yt
∂Ht

, and WL,t = ∂Yt
∂Lt

. (30)

In sum, we provide a model in which the skill premium increases with the level of technology,

yet the wage earnings of individual skilled workers can fall as they potentially are displaced. We

discuss the model calibration next.
17Our formulation for θ is related to Jones and Kim (2018) in that the skill of an individual worker grows on average

over time but occasionally resets to a lower level.
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4.2 Model Calibration

Here we discuss how we fit the model to the data.

Methodology

The model has a total of 14 parameters. We choose these parameters via a mixture of calibration

and indirect inference. Specifically, we choose sl = 0.375 so that workers with only low-skill labor

inputs constitute the lowest income bin (25% of the sample), and half of the second-lowest. Since m

and φ are not separately identified, we set the learning rate m = 0.03; when choosing the grid for θ,

we assume that skilled workers human capital θ ∈ (0.03, 1). Last, we set the worker exit rate, at

δ = 2.5% which corresponds to a 40 year average working life.

To estimate the remaining 10 parameters Θ = {µ, λ, ρ, σ, φ, α, κ, ω, h, g}, we target the mean

level of the skill premium, the response of labor productivity and the labor share to changes in

technology estimated in Section 1, and the response of worker earnings growth and likelihood of

large wage declines conditional on levels of prior income, estimated in Section 3.2. Since the model

has no mechanism for delayed responses, whereas in the data the diffusion of technology likely takes

some time, we match the model responses on impact to the empirical responses over five years.

Table 8 summarizes the 14 statistics that we target.

To obtain some intuition for how the model parameters are identified, we next discuss how these

quantities help identify model parameters. In the model, the skill premium defined as the ratio of

wages for the high-skill versus the low-skill labor input equals

WH,t

WL,t
= µ

(1− µ) (1− λ)

(
Ht

Lt

)σ−1
(
λ

(
ξt
Lt

)ρ
+ (1− λ)

) ρ−σ
ρ

. (31)

Examining (31), we see that as long as technology is more complementary to high-skill than low-skill

labor inputs (ρ > σ) and we hold fixed the supply of skilled and unskilled labor H and L then the

skill premium is increasing with the level of technology ξ. Thus, just like the standard model, our

model generates an increase in the skill premium over the long run during periods when the rate of

technology rises faster than average. However, in our model the supply of high- and low-skill inputs

H and L varies in the short run, due to skill displacement (28). This process leads to drop in H/L

and thus a further increase in the skill premium in the short-run.

When mapping the model to the data, we define the skill premium as the mean ratio of earnings

of workers in the 75th vs the 25th percentile. This ratio combines information on the ratio WH/WL

and the ergodic distribution of θ. In terms of identifying model parameters, the mean level of the

skill premium thus helps identify the factor share parameters µ and λ and the elasticities ρ and σ.
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Further, it affects the parameters driving the ergodic distribution of θ, namely ω, φ, h and α.

The labor share of output in the model can be written as

WH,t Lt +WL,tHt

Yt
=

(1− λ) (1− µ)
(
λ
(
ξt
Lt

)ρ
+ 1− λ

)σ
ρ
−1

+ µ
(
Ht
Lt

)σ
(1− µ)

(
λ
(
ξt
Lt

)ρ
+ 1− λ

)σ
ρ + µ

(
Ht
Lt

)σ (32)

The response of the labor share (32)— and output (23)—to increases in technology ξ is ambiguous

in the model. These both depend on the extent to which different tasks contribute to output (µ

and λ); technology-labor complementarity (ρ and σ) and the response of H and L to a technology

shock (which depends on h and α). What helps with identification in our case is our finding that

technology improvements are associated with declines in the labor share of output and an increase

in output per worker (see Section 1). The fact that output/productivity and the labor share respond

with opposite signs helps narrow down the set of admissible parameters quite significantly.

To identify the parameters involved in the dynamics of worker skill acquisition and displacement

in (28), we also target the heterogeneity in earnings responses to changes in technology (see

Section 3.2). Specifically, we target the mean earnings growth responses (column (2) in Table 5), and

changes in the probability of large declines in wage earnings (column (5) in Table 5). To construct

the analogue. Recall that, in the data, there is a U-shape relation in mean responses, with the

highest-paid workers and lowest-paid workers experiencing the largest earnings declines in response

to technology shocks. In terms of higher moments though, we find that the highest-paid workers

are far more likely than other groups to experience large earnings declines. In the model, whether

higher-paid workers are more exposed to technology is largely ambiguous.

To see this, we can derive the following decomposition for wage earnings growth in the model

over any horizon h:

wi,t+h − wi,t
wi,t

= wl,t
wl,t + θi,tsp,t︸ ︷︷ ︸

low skill
income share

∆hwl,t+h
wl,t︸ ︷︷ ︸

low skill
wage chg

+ θi,tsp,t
wl,t + θi,tsp,t︸ ︷︷ ︸

high skill
income share

[
sp,t+h
sp,t

· ∆hθi,t+h
θi,t︸ ︷︷ ︸
skill

displacement

+ ∆hsp,t+h
sp,t︸ ︷︷ ︸

high skill
wage chg

]
(33)

where sp,t = Wh,t −Wl,t.

As we see from the last term in brackets in (33), whether the highest-earning workers experience

larger declines depends on whether the increase in the skill premium in is sufficient to offset the

loss of worker skill θi,t due to skill displacement—see equation (28). For the high-income (i.e. θ)

workers, the primary income risk in the model comes from having human capital displaced, while

the lowest-income workers (those in the sl group with θ = 0) face income losses from changes in

wages. Improvements in technology lead to an increase in the skill price of H and a drop in the skill
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price of L because of both differences in complementarity and skill displacement—since workers

fall down the ladder following a shock, H is scarcer and L is more abundant. These effects depend

on the size of human capital losses and increases, as well as the associated skill prices following

displacement, including h, φ, ω, λ, µ, σ, and ρ.

Mapping the empirical regressions in Table 5 to the model entails two challenges: first, our

technology measure varies at the industry and occupation level whereas the model refers to a

single industry; second, our empirical specifications include occupation, industry, and time fixed

effects so the main coefficients are also identified by comparing to workers in other occupations or

industries. To narrow the gap between the model and the data, we construct the closest equivalent

to a regression coefficient in the model as follows. We first calculate a set of wage responses that

vary by income bins that match the empirical equivalents. Within each income bin, we compute

wage growth for exposed (di,t = 1) and unexposed (di,t = 0) workers in the case of a technology

shock occurring (dNt = 1) or not (dNt = 0). The equivalent of the regression coefficient in the model

is the coefficient of wage growth on the interaction between a shock occurring and the worker being

exposed, while separately controlling for exposure and shock dummies and everything interacted

with income bins.18

We calibrate the remaining 10 model parameters by minimizing the distance between the output

of the model X̂(Θ) and the data X,

Θ̂ = arg min
Θ

(
X − X̂(Θ)

)′
W
(
X − X̂(Θ)

)
. (34)

Our choice of weighting matrix W emphasizes percent deviations of the model vs the empirical

values and places relatively more weight in the aggregate moments.

Table 7 summarizes our parameter choices. Similar to Krusell et al. (2000); Eisfeldt et al. (2021),

we find that technology is a good substitute for the low-skill labor input (ρ = 0.74) whereas the

high-skill labor input is complementary to technology (σ = −0.12). Technology shocks are relatively

frequent (ω = 1.56) and sizeable (κ = 0.32). Importantly, however, the model features a modest

degree of skill displacement: workers who fall down the ladder only lose h = 6% of their existing

level of θ. That said, these losses are pervasive: the probability of skill loss conditional on a shock is

α = 32%. Further, these skill losses are transient: workers are able to acquire skills (increase θ) at

an average rate of mφ = 7.2% per year.
18When constructing these regression coefficients in the model, we use the ergodic distribution of wage growth, so

we take into account the share of exposed workers α, the frequency of technology shocks ω and the likelihood each
worker falls in a given income bin.
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Model Fit and Discussion of the Mechanism

Examining Table 8, we see that the model does a good job matching the target statistics, including

the labor share and responses of aggregate quantities to technology shocks. Specifically, the model

is able to capture the fact that output and labor productivity rise following a technology shock

whereas the labor share falls. In addition, the model is able to largely replicate both the marginal

effect of a shock on exposed workers as well as the U-shape pattern of coefficients by income rank.

Figure 11 plots the impulse responses generated by the model in response to a one-standard

deviation shock to the level of technology ξ (panel A). Panel B shows that this improvement in

technology leads to a 2.5% rise in output/productivity on impact. By contrast, Panel C shows

that the labor share declines by approximately 1.5%. This decline in the labor share is driven

by a combination of two factors. First, as we see in Panel D, the quantity of the high-skill labor

input declines by approximately 2.5% as workers’ skills are displaced. This fall is temporary, as H

gradually increases to skill acquisition. Since the wages for the high-skill task exceed the wages of

the low-skill task, the total wage bill in the economy falls. Second, Panel E shows that improvements

in technology are associated with decline in the price of the low-skill labor input (WL) which further

depresses the labor share; by contrast, even though the price of the high-skill labor input rises in

Panel F, the rise is not sufficient to cause the labor share to rise because H falls. These movements in

skill prices are driven by a combination of two forces: first, the high-skill input is complementary to

ξ whereas the low-skill input is a substitute; second, skill prices change in response to the reduction

in the effective supply of H due to skill displacement.

Figure 12 summarizes the distributional impact of technology shocks in the cross-section of

workers. Panel A focuses on differences in growth rates in response to a technology shock relative

to the no-shock counterfactual. The blue bars correspond to unexposed workers (i.e.di = 0). For

these workers, the only effect in play is changes in skill prices. Low-income workers supply only the

low-skill labor input L. Since the price WL of the low-skill input falls, these workers experience a

decline in wages. By contrast, the high-income workers supply mostly the high-skill input H; since

the price of the high-skill input WH rises, these workers experience an increase in wages. Absent

skill displacement would be the only impact on wage growth in the model—and would be similar to

the models in Krusell et al. (2000) and Eisfeldt et al. (2021). Yet, such a model would be unable to

produce the empirical patterns in Table 5.

The orange bars in Panel A of Figure 12 correspond to the wage growth of exposed (i.e. di = 1)

workers following a shock relative to the no-shock counterfactual. These workers experience the

same change in skill prices as the unexposed workers, but they are also subject to skill displacement

(loss of human capital θ). As a result, the wage growth of the high-income exposed workers is
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markedly different than the wage growth of the unexposed high-income workers: despite the fact

that skill prices WH rise, these workers experience a fall in wages due to loss of human capital θ.

Further, just like the data, their wages fall significantly more than the low-income workers, implying

that this loss in skill is significant.

Panel B Figure 12 plots the equivalent of the regression coefficient in the model, that is, the

OLS coefficient of a regression of wage growth on a shock and exposure dummy, controlling for

income. Since these slope coefficients are estimated using the ergodic distribution of wages at the

model steady state, which factor in the relative size of the different worker groups and the frequency

of technology shocks they cannot be expressed as simple functions of the coefficients in Panel A.

However, they display a similar pattern as the orange bars: improvements in technology have an

asymmetric effect on the wages of exposed workers. The workers most affected are the high-income

workers—with some mild evidence of a U-shaped response.

In brief, Figure 12 summarizes the impact of technology of wages, which is a combination of

shifts in skill prices and changes in the quantity of human capital. The combination of these effects

generate the U-shape in earnings losses we see in column (2) of Table 5. The lowest-income workers

have θ = 0, and as a consequence have wages which fall dramatically relative to a non-shock period.

Workers in the middle part of the income distribution experience some loss of human capital and

suffer from the decline in the price of low-skill labor input WL, but these losses are partly offset

from the increases in the high-skill price WL. Workers at highest income group has the farthest to

fall: these workers who are exposed to technology experience the largest wage declines of anyone

in the model due to skill displacement. By contrast, unexposed workers who stay at the top of

the ladder following a technological innovation see large wage increases due to higher WH—which

results from scarcer H and the complementarity of H and ξ.

5 Conclusion

We develop a new method for identifying the arrival of labor-displacive innovations. Our time series

indicators of worker technology exposure date are available since the mid 19th century and are

available at a high level of granularity—industry and worker occupation. Examining the type of

worker tasks most exposed to innovation, we find that while non-routine manual (physical) and

routine-manual tasks have been highly exposed throughout the last 150+ years, the innovations of

the information technology revolution in the post-1980 period saw an increased relationship with

cognitive tasks.

More importantly, we find that our technology exposure measures are consistently negatively

related to workers’ future labor market outcomes, both at the group (occupation) but also at the
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individual level. Using a panel of administrative data on worker earnings, we show that the earnings

of older and less educated workers are more responsive to our technology exposure measure, which

is in line with the existing view of technology-skill complementarity. By contrast, our finding that

the earnings of more highly paid workers (relative to their peers in the same industry and same

occupation) respond more to our technology measure is somewhat at odds.

We reconcile these patterns with the standard view by allowing for skill displacement in the

standard model of technology-skill complementarity. Our calibrated model is able to quantitatively

replicate our main findings: improvements in technology are associated with increases in productivity

but a decline in the labor share; lower earnings across workers of all income groups. In the model, the

earnings of high-income workers respond more to technology improvements because these workers

have further to fall: the loss of skills following technological progress is sufficient to offset any wage

gains associated with higher skill prices.

Overall, we provide long-run evidence that the technological displacement of labor has been

a persistent phenomenon over the past century and a half. Our findings illustrate the utility of

our technology exposure indicators that can be used to study an array of questions in economics.

That said, we should emphasize that our indicators are constructed largely from the perspective of

incumbent workers and are primarily intended to capture technological substitution of existing tasks.

A likely feature of technological progress that we are missing is that it facilitates the creation of new

tasks and occupations. Building on our work, Autor, Salomons, and Seegmiller (2021) represents a

promising step along that direction.
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Figures and Tables

Figure 1: Examples of Technology Exposure: By Innovations
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Figure 2: Technological Exposure, by occupation income level
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Note: This figure plots average ηi,t for occupations over the 1980 to 2002 period by wage percentile rank. The wage
data come from the Current Population Survey Merged Outgoing Rotation Groups.
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Figure 3: Technological Exposure, composition by major occupation group
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Note: This figure plots the average of our occupation-level innovation exposure index, ηi,t, where ηi,t has been
averaged separately within eight broad occupation groups. The occupation group averages are re-scaled each year so
that the total across all groups sums to one in the given year.
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Figure 4: Technology Exposure, by task type

A. Levels
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Note: This figure plots the level and composition of our index of technological exposure by task category:

λw,t =
∑
i

ηi,t × Tw,t(i)× ωi (35)

Panel A plots the raw index λw,t and panel B plots the relative shares λw,t/
∑

w′ λw′,t Here w represents one of the
four given task categories. Tw,t is an indicator that takes a value of 1 if occupation i is in the top quintile of the
cross-sectional distribution of task scores for task category w. ηi,t is our index of technological exposure and ωi gives
the Acemoglu and Autor (2011) occupational employment shares. See main text for more details.
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Figure 5: Technology Exposure, by education requirements

A. Levels
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Note: This figure plots the level and composition of our index of technological exposure by education category:

ζs,t =
∑
i

ηi,t × Ss,t(i)× ωi,t (36)

Panel A plots the raw index ζs,t and panel B plots the relative shares ζs,t/
∑

s′ ζs′,t Here s represents either the
educational category "high school or less" or "college grad or more". Ss,t is and indicator that takes a value of 1 if
occupation i is in the top quintile of the time t cross-sectional distribution of shares of workers falling in category s.
ηi,t is our index of technological exposure and ωi,t gives occupational employment shares. See main text for more
details.

49



Figure 6: Innovation: Productivity vs Labor Share
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Note: The figure plots the estimated coefficients β(k) from regressions of the form

logXj,t+k − logXj,t = α(k) + β(k)ψj,t + δ(k)Zj,t + εj,t for k = 1 . . . T years

The main independent variable ψj,t is an index of innovation in industry j in year t, constructed as follows. First, we
assign breakthrough patents to industries using the patent CPC tech class to industry crosswalk from Goldschlag et al.
(2020). Second, we only include breakthrough patents whose average similarity to the industry’s occupations (using
occupation-by-industry employment weights) are above the (unconditional) median. We scale ψj,t by US population
and normalize to unit standard deviation. Controls Zj,t include industry employment shares, year fixed effects and
lagged 5-year growth rate of the dependent variable. Standard errors are clustered by industry, and corresponding
t-stats are shown in parentheses.
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Figure 7: Employment and Technology Exposure (long-run: 1850–present)
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Note: Figure shows the slope coefficients on annual regressions of 20-Year employment share growth on our technology
exposure ηi,t, using Census Years from 1850 to 1990. Specifically, we plot the β coefficients from

1
k

(
log Yj,t+k − log Yj,t

)
= αt + βtηi,t + λt + εi,t

Here Yi,t is the occupation’s share in total non-farm employment. Standard errors are clustered by occupation and
shaded area represents the corresponding 90% confidence intervals for βτ . Growth rates are expressed in annualized
percentage terms and ηi,t is standardized.
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Figure 8: Employment, wage earnings and technology exposure (recent period: 1980–present)

A. Employment Growth
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B. Wage Growth
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Note: The Figures above plot coefficients from panel regressions of annualized wage and income growth rates over
different time horizons on occupation innovation exposures:

yi,t+k − yi,t = α+ βηi,t + δXi,t + εi,t

Controls Xi,t–includes three one-year lags of dependent variable, and time fixed effects. Dependent variable is expressed
in annualized percentage terms and ηi,t is standardized. Figures plot 90% confidence interval for each time horizon.
Data come from the CPS Merged Outgoing Rotation Groups (MORG) and cover the 1985–2018 period.
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Figure 9: Employment share over the business cycle (Technology Exposure vs RTI)

A. Technology Exposure (ηi,t)
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B. Routine Task Intensity (RTI)
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Note: The above figure plots aggregate employment shares over time for occupations that were in the top quintiles of
innovation exposure (ηi,t) and routine-task intensity in the year 1985. Vertical shaded bars represent NBER recession
dates. Data source: CPS Merged Outgoing Rotation Groups extracts obtained from the Center For Economic Policy
Research website.
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Figure 10: Example: Order Clerks versus Personnel and Library Clerks
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Figure 11: Model: Impulse Responses
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C. Labor Share D. High-skill labor input H
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E. Wage for low-skill input (Wl) F. Wage for high-skill input (Wh)
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Note: This figure shows the impulse responses of key model quantities following a one-standard deviation technology
shock evaluated at the steady state of the model.
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Figure 12: Model: Innovation and Worker Earnings

A. Differences in Post-Shock Wage Growth
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B. Regression Coefficients for Post-Shock Wage Growth
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Note: Panel A shows raw differences between wage growth during a shock period and wage growth if there had not
been a shock for workers who are exposed to the shock, workers who are not exposed to the shock. Panel B shows the
associated regression coefficients, which represent the marginal effects of a shock on wage growth given exposure. The
left part of the figure shows the results in our baseline calibration. The right part of the figure compares to the case
where there is no displacement of human capital.
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Figure 13: The race between education and technology

A. Technology (ξ) B. High-skill labor input (H)

0 10 20 30 40 50 60

0

5

10

15

20

Years

%
C
ha

ng
e
fr
om

St
ea
dy

St
at
e

0 10 20 30 40 50 60
−20

−15

−10

−5

0

5

Years

%
C
ha

ng
e
fr
om

St
ea
dy

St
at
e

C. Labor Share D. Output
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E. Top 5% Income Share F. Skill Premium (wh − wl)
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Transition paths to new SS: � Higher ω � Higher ω and φ

Note: Figure computes the transition paths from the old to the new steady state for two permanent parameter shifts:
1) the blue line plots a permanent increase in the frequency of technological innovation ω, calibrated so that the level
of technology ξ is permanently higher by one standard deviation relative to the old steady state (panel A); and 2) the
orange line plots the transition paths associated with the same shift in ω but also with an increase in the rate of new
skill acquisition φ such that the total supply of the high-skill labor input remains the same as the old steady state
(panel B). Panel C plots the labor share of output; panel D plots total output/productivity; panel E plots income
inequality, defined as the top 5% income share in the model; and panel F plots the skill premium.
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Table 1: Technology And Employment Over the Long Run (1850–present)

A. Occupation-level Employment B. Industry X Occupation level employment

10 Years 20 Years 10 Years 20 Years 10 Years 20 Years 10 Years 20 Years

Technology Exposure, ηi,t -0.43∗∗∗ -0.75∗∗∗ -0.33∗∗∗ -0.66∗∗∗ -0.37∗∗∗ -0.76∗∗∗ -0.38∗∗∗ -0.86∗∗∗

(-4.68) (-6.30) (-4.17) (-6.33) (-2.76) (-3.69) (-2.83) (-3.92)

Observations 2,865 2,574 2,492 2,208 102,400 81,009 72,451 54,662
R2 (Within) 0.016 0.043 0.067 0.078 0.003 0.013 0.004 0.018
Controls
Time FE Y Y Y Y
Industry X Time FE Y Y Y Y
Lagged Dependent Variable Y Y Y Y

Note: The table above reports results from regressions of the form

1
k

(
log Yi,t+k − log Yi,t

)
= α0 + αt + β(k)ηi,t + ρ (log Yi,t − log Yi,t−k) + εi,t

for k = 10, 20 years for Census years spanning from 1850-2010. Here Yi,t is the occupation’s share in total non-farm employment. ηi,t is standardized and growth rates
are in annualized percentage terms. Standard errors are clustered by occupation and corresponding t-stats are shown in parentheses. Observations are weighted by
occupation employment share at time t. Census year 1870 does not show up in the first column of the 20-year subsample regressions because the 1890 Census records
no longer exist.
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Table 2: Summary Statistics: Worker-Level Data

Variable Mean SD 5% 25% Median 75% 95%

W2-Earnings 100,100 282,400 18,060 47,100 76,010 119,600 233,900
Age 41 7 29 34 41 47 53
Age: Lowest 25% Earners 39 7 29 33 38 44 51
Age: Top 5% Earners 44 7 31 39 46 50 54
Earnings growth, 3-years -0.053 0.573 -0.890 -0.124 0.015 0.143 0.540
Earnings growth, 5-years -0.063 0.592 -0.968 -0.158 0.011 0.156 0.574
Earnings growth, 10 -years -0.073 0.639 -1.098 -0.215 0.005 0.190 0.666

Note: The table reports summary statistics for our wage earnings data from the Census-CPS sample, which covers
the 1988 to 2016 period. W2-Earnings are reported in terms of 2015 dollars.
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Table 3: Worker Earnings and Technology Exposure

(1) (2)

A. Cond. Mean: E[g], by Horizon
3 years -1.21 -1.12

(-6.32) (-5.65)
5 years -1.55 -1.30

(-6.84) (-4.77)
10 years -1.43 -1.24

(-4.96) (-3.14)

B. Risk: Absolute Income Growth E[|g|]
3 years 0.73 0.25

(3.03) (1.59)
5 years 0.76 0.37

(2.40) (1.78)
10 years 0.38 0.47

(0.95) (1.68)

C. Skewness: Prob. Large Income Decline p(g < p10)
3 years 0.56 0.38

(6.31) (4.18)
5 years 0.58 0.41

(4.76) (3.31)
10 years 0.37 0.27

(2.09) (1.48)

Controls:
Industry FE Y
Occupation FE Y
Year FE Y
Industry × Year FE Y
Occupation × Year FE Y

Note: Panel A shows the estimated slope coefficients β(h) (times 100) from equation (21) in the main text for
horizons h of 3,5, and 10 years. Panels B and C focus on the 5-year horizon. Panel B shows the slope coefficients of a
variant of the above specification where we replace the dependent variable gi,t:t+h with its absolute value |gi,t:t+h|
to capture the response of second moments to changes in technology exposure ηi,t. Similarly, Panel C replaces the
dependent variable with a dummy that takes the value of one if gi,t:t+h lies in the bottom 10-th percentile; this
specification allows us to capture increases in negative skewness in response to an increase in ηi,t. We report t-statistics
(in parentheses) using standard errors clustered at the industry (NAICS 4-digit) level. All specifications include
industry times year and occupation times year fixed effects. We normalize ηi,t to unit standard deviation. The bottom
panel shows the p-values associated with the hypotheses that the coefficients are equal across the reported subgroups.
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Table 4: Worker Earnings and Technology Exposure, by Education

Education

(1) (2) (3) (4) (5)

Cond. Mean St. Dev Skew
E[g] E[|g|] p(g < p10)

3-year 5-year 10-year 5-year 5-year

College -0.09 -1.14 -1.21 0.49 0.35
(-3.33) (-3.34) (-2.49) (2.65) (2.57)

No College -1.30 -1.50 -1.76 0.39 0.48
(-5.58) (-5.18) (-4.47) (1.51) (4.33)

Coeff. Differences p-values

College = No College 0.043 0.110 0.052 0.537 0.071

Note: Columns (1) to (3) show the estimated slope coefficients (times 100) from equation (21) in the main text: the
dependent variable is worker earnings growth over horizons of 3,5, and 10 years; the main independent variable of
interest is a worker’s technology exposure ηi,t. The slope coefficient β(h) is allowed to vary with the worker’s education.
Columns (1) to (3) correspond to horizons of 3,5, and 10 years. Columns (4) and (5) focus on the 5-year horizon.
Column (4) shows the slope coefficients of a variant of the above specification where we replace the dependent variable
gi,t:t+h with its absolute value |gi,t:t+h| to capture the response of second moments to changes in technology exposure
ηi,t. Similarly, Column (5) replaces the dependent variable with a dummy that takes the value of one if gi,t:t+h lies in
the bottom 10-th percentile; this specification allows us to capture increases in negative skewness in response to an
increase in ηi,t. We report t-statistics (in parentheses) using standard errors clustered at the industry (NAICS 4-digit)
level. All specifications include industry times year and occupation times year fixed effects.We normalize ηi,t to unit
standard deviation. The bottom panel shows the p-values associated with the hypotheses that the coefficients are
equal across the reported subgroups.
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Table 5: Worker Earnings and Technology Exposure, by Prior Income

Income Percentile

(1) (2) (3) (4) (5)

Cond. Mean St. Dev Skew
E[g] E[|g|] p(g < p10)

3-year 5-year 10-year 5-year 5-year

0 to 25-th -1.24 -1.49 -1.85 -0.26 0.29
(-5.76) (-5.28) (-4.70) (-1.07) (2.23)

25 to 50-th -0.85 -1.01 -0.96 0.10 0.26
(-4.14) (-3.57) (-2.04) (0.40) (1.45)

50 to 75-th -1.01 -1.18 -1.01 0.48 0.39
(-3.51) (-3.07) (-1.87) (1.65) (2.84)

75 to 95-th -1.05 -1.17 -0.81 0.76 0.39
(-4.12) (-3.45) (-1.64) (3.25) (2.76)

95 to 100-th -2.24 -2.47 -2.28 2.01 1.26
(-6.11) (-4.75) (-3.83) (5.78) (5.50)

Coeff. Differences p-values

[95-100] = [25-95] 0.000 0.000 0.002 0.000 0.000
[0-25] = [25-95] 0.610 0.630 0.331 0.175 0.853

[95-100] = [0-25] 0.019 0.092 0.498 0.000 0.000

Note: Columns (1) to (3) show the estimated slope coefficients (times 100) from equation (21) in the main text: the
dependent variable is worker earnings growth over horizons of 3,5, and 10 years; the main independent variable of
interest is a worker’s technology exposure ηi,t. The slope coefficient β(h) is allowed to vary with the worker’s prior
income rank. Columns (1) to (3) correspond to horizons of 3,5, and 10 years. Columns (4) and (5) focus on the 5-year
horizon. Column (4) shows the slope coefficients of a variant of the above specification where we replace the dependent
variable gi,t:t+h with its absolute value |gi,t:t+h| to capture the response of second moments to changes in technology
exposure ηi,t. Similarly, Column (5) replaces the dependent variable with a dummy that takes the value of one if
gi,t:t+h lies in the bottom 10-th percentile; this specification allows us to capture increases in negative skewness in
response to an increase in ηi,t. We report t-statistics (in parentheses) using standard errors clustered at the industry
(NAICS 4-digit) level. All specifications include industry times year and occupation times year fixed effects. We
normalize ηi,t to unit standard deviation. The bottom panel shows the p-values associated with the hypotheses that
the coefficients are equal across the reported subgroups.
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Table 6: Worker Earnings and Technology Exposure, by Age

Worker Age

(1) (2) (3) (4) (5)

Cond. Mean St. Dev Skew
E[g] E[|g|] p(g < p10)

3-year 5-year 10-year 5-year 5-year

25–35 years -0.39 -0.64 -0.92 0.38 0.18
(-1.86) (-2.55) (-2.42) (1.84) (1.50)

35–45 years -0.86 -1.04 -1.37 0.05 0.23
(-5.24) (-5.08) (-3.63) (0.37) (2.55)

45–55 years -1.95 -2.25 -2.51 1.13 0.88
(-3.72) (-3.55) (-3.02) (2.5) (3.36)

Coeff. Differences p-values

45–55 = 25–35 0.001 0.002 0.006 0.051 0.001
45–55 = 35–45 0.015 0.020 0.044 0.010 0.011

Note: Columns (1) to (3) show the estimated slope coefficients (times 100) from equation (21) in the main text: the
dependent variable is worker earnings growth over horizons of 3,5, and 10 years; the main independent variable of
interest is a worker’s technology exposure ηi,t. The slope coefficient β(h) is allowed to vary with the worker’s age.
Columns (1) to (3) correspond to horizons of 3,5, and 10 years. Columns (4) and (5) focus on the 5-year horizon.
Column (4) shows the slope coefficients of a variant of the above specification where we replace the dependent variable
gi,t:t+h with its absolute value |gi,t:t+h| to capture the response of second moments to changes in technology exposure
ηi,t. Similarly, Column (5) replaces the dependent variable with a dummy that takes the value of one if gi,t:t+h lies in
the bottom 10-th percentile; this specification allows us to capture increases in negative skewness in response to an
increase in ηi,t. We report t-statistics (in parentheses) using standard errors clustered at the industry (NAICS 4-digit)
level. All specifications include industry times year and occupation times year fixed effects.We normalize ηi,t to unit
standard deviation. The bottom panel shows the p-values associated with the hypotheses that the coefficients are
equal across the reported subgroups.
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Table 7: Model Parameters

Description Parameter Value

Share of workers who do not move up the ladder sl 0.375
Minimum level of skill θ 0.03
Probability of worker exit δ 0.025
Amount of skills acquired m 0.03
CES parameter in inner nest (technology ξ and low-skill labor L) ρ 0.74

Share of technology in inner nest λ 0.27

CES parameter in outer nest (high-skill labor H and ξ/L composite) σ -0.12

Share of high-skill labor in outer nest µ 0.17

Size of technology improvement κ 0.31

Arrival rate of technology shocks ω 1.56

Share of exposed workers α 0.32

Human capital loss percentage conditional on fall h 0.06
Rate of depreciation of technology g 0.12
Likelihood of worker skill acquisition φ 2.40

Note: Table reports the parameter used to calibrate the model. The first four parameters are calibrated a priori;
the latter 10 parameters are chosen to fit the statistics reported in Table 8.
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Table 8: Model Fit

Statistic Data Model

Labor share, average 0.66 0.59

Labor share, response to ξ -1.29 -1.48

Skill premium (p75 / p25 ratio), average 2.45 1.68

Labor productivity, response to ξ 2.81 2.31

Worker earnings growth response to ξ
0 to 25-th percentile -1.49 -1.13
25 to 50-th percentile -1.01 -1.06
50 to 75-th percentile -1.18 -1.72
75 to 95-th percentile -1.17 -2.00
95 to 100-th percentile -2.47 -2.45

Likelihood of large wage declines in response to ξ
0 to 25-th percentile 0.29 0.51
25 to 50-th percentile 0.26 0.51
50 to 75-th percentile 0.39 0.51
75 to 95-th percentile 0.39 0.51
95 to 100-th percentile 1.26 1.40

Note: Table reports the fit of the model to the statistics that we target. The parameters used in our calibration are
listed in Table 8.
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Table 9: Technology and Labor Market Outcomes: Comparison to Other Measures

A. Employment

(1) (2) (3) (4) (5)

Technology Exposure ηi,1980 -0.79∗∗∗ -0.87∗∗∗ -0.74∗∗∗ -0.74∗∗∗ -0.82∗∗∗

(-5.68) (-6.25) (-5.26) (-5.12) (-5.99)

Routine Task Intensity (RTI) -0.058 0.011
(-0.50) (0.08)

Offshorability -0.15∗∗ -0.20∗∗

(-2.04) (-2.50)

Robot Exposure -0.66∗∗ -0.93∗∗

(-2.21) (-2.21)

Software Exposure -0.36 0.069
(-1.34) (0.21)

B. Wages

(1) (2) (3) (4) (5)

Technology Exposure ηi,j,1980 -0.082∗∗∗ -0.064∗∗∗ -0.071∗∗∗ -0.100∗∗∗ -0.078∗∗∗

(-4.11) (-3.11) (-3.87) (-5.37) (-4.21)

Routine Task Intensity (RTI) -0.066∗ -0.059∗

(-1.97) (-1.70)

Offshorability 0.0042 -0.0026
(0.17) (-0.09)

Robot Exposure -0.13∗ -0.27∗∗∗

(-1.86) (-2.76)

Software Exposure 0.13∗∗ 0.24∗∗∗

(2.10) (4.73)

Observations 17536 16959 17448 17448 16959

Note: This table shows results from estimating

1
k

(
log Yi,j,t+k − log Yi,j,t

)
= α+ αj + βηi,1980 + δXi + εi,j

Here i indexes occupations and j indexes industries; we report results for k = 32 years using Deming (2017) data from
the 1980 Census and the 2012 ACS. The dependent variables are employment (Panel A) or average wages (Panel B).
All specifications include industry fixed effects and controls for occupation employment share in 1980, occupation
log wage in 1980, three categorical indicators for the occupation’s average education level in 1980. We additionally
include the routine-task intensity and the measure of occupation-level offshorability from Autor and Dorn (2013) and
the measure of exposure to robots or software from Webb (2019) depending on the specification. Observations are
weighted by employment share in 1980.
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A Appendix

A.1 Converting Patent Text for Numerical Analysis

Here, we briefly overview our conversion of unstructured patent text data into a numerical format
suitable for statistical analysis. We obtain text data for measuring patent/job task similarity
from two sources. Job task descriptions come from the revised 4th edition of the Dictionary of
Occupation Titles (DOT) database. We use the patent text data parsed from the USPTO patent
search website in Kelly et al. (2020), which includes all US patents beginning in 1976, comprising
patent numbers 3,930,271 through 9,113,586, as well as patent text data obtained from Google
patents for pre-1976 patents. Our analysis of the patent text combines the claims, abstract, and
description section into one patent-level corpus for each patent. Since the DOT has a very wide
range of occupations (with over 13,000 specific occupation descriptions) we first crosswalk the DOT
occupations to the considerably coarser and yet still detailed set of 6-digit occupations in the 2010
edition of O*NET. We then combine all tasks for a given occupation at the 2010 O*NET 6-digit
level into one occupation-level corpus. The process for cleaning and preparing the text files for
numerical representation follows the steps outlined below.

We first clean out all non-alphabetic characters from the patent and task text, including removing
all punctuation and numerical characters. We then convert all text to lowercase. At this stage each
patent and occupation-level task text are represented by a single string of words separated by spaces.
To convert each patent/occupation into a list of associated words we apply a word tokenizer that
separates the text into lists of word tokens which are identified by whitespace in between alphabetic
characters. Since most words carry little semantic information, we filter the set of tokens by first
removing all “stop words”– which include prepositions, pronouns, and other common words carrying
little content–from the union of several frequently used stop words lists.

Stop words come from the following sources:

• https://pypi.python.org/pypi/stop-words

• https://dev.mysql.com/doc/refman/5.1/en/fulltext-stopwords.html

• http://www.lextek.com/manuals/onix/stopwords1.html

• http://www.lextek.com/manuals/onix/stopwords2.html

• https://msdn.microsoft.com/zh-cn/library/bb164590

• http://www.ranks.nl/stopwords

• http://www.text-analytics101.com/2014/10/all-about-stop-words-for-text-mining.

html

• http://www.webconfs.com/stop-words.php
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• http://www.nltk.org/book/ch02.html (NLTK stop words list)

We also add to the list of stop words the following terms that are ubiquitous in the patent text
but don’t provide information regarding the content and purpose of the patent: abstract, claim,
claims, claimed, claiming, present, invention, united, states, patent, description, and background.
The final stop word list contains 1337 unique terms that are filtered out.

Even after removing stop words, we expect much of the remaining text to offer little information
regarding the purpose and use of a given patent or the core job functions expected to be performed
by workers in a given occupation. In order to focus on the parts of the document most likely to
contain relevant information, we retain descriptive and action words–i.e. nouns and verbs–and
remove all other tokens. We do this using the part-of-speech tagger from the NLTK Python library.
Finally, we lemmatize all remaining nouns and verbs, which is to convert them to a common root
form. This converts all nouns to their singular form and verbs to their present tense. We use the
NLTK WordNet Lemmatizer to accomplish this task. After these steps are completed, we have a
set of cleaned lists of tokens for each patent and each occupation’s tasks that we can then use to
compute pairwise similarity scores.

A.2 Description of Word Embedding Vectors

To appreciate how our metric differs from the standard bag-of words approach it is useful to briefly
examine how word embeddings are computed in Pennington et al. (2014). Denote the matrix X as
a V × V matrix of word co-occurence counts obtained over a set of training documents, where V is
the number of words in the vocabulary. Then Xi,j tabulates the number of times word j appears in
the context of the word i.19 Denote Xi =

∑
kXi,k as the number of times any word appears in the

context of word i, and the probability of word j occuring in the context of word i is Pi,j ≡ Xi,j/Xi.
The goal of the word embedding approach is to construct a mapping F (·) from some d-dimensional
vectors xi, xj , and x̃k such that

F (xi, xj , x̃k) = Pi,k
Pj,k

(A.1)

Imposing some conditions on the mapping F (·), they show that a natural choice for modeling Pi,k
in (A.1) is

xTi x̃k = log(Xi,k)− log(Xi) (A.2)

Since the mapping should be symmetric for i and k they add “bias terms” (essentially i and k fixed
effects) which gives

xTi x̃k + bi + bk = log(Xi,k) (A.3)
19Pennington et al. (2014) use a symmetric 10 word window to determine “context” and weight down occurences

that occur further away from the word (one word away receives weight 1, two words away receives weight 1/2, etc.).
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Summing over squared errors for all pairwise combinations of terms yields the weighted least squares
objective

Minxi,x̃k,bi,bk
V∑
i=1

V∑
j=1

f(Xi,j)
(
xTi x̃k + bi + bk − log(Xi,j)

)2
(A.4)

Here the observation-specific weighting function f(Xi,j) equals zero for Xi,j = 0 so that the log
is well defined, and is constructed to avoid overweighting rare occurences or extremely frequent
occurences. The objective (A.4) is a highly-overidentified least squares minimization problem.
Since the solution is not unique, the model is trained by randomly instantiating xi and x̃k and
performing gradient descent for a pre-specified number of iterations, yielding d-dimensional vector
representations of a given word. Here d is a hyper-parameter; Pennington et al. (2014) find that
d = 300 works well on word analogy tasks.

Since (A.4) is symmetric it yields two vectors for word i, xi and x̃i, so the final word vector is
taken as the average of the two. The ultimate output is a dense 300-dimensional vector for each
word i that has been estimated from co-occurence probabilities and occupies a position in a word
vector space such that the pairwise distances between words (i.e. using a metric like the cosine
similarity) are related to the probability that the words occur within the context of one another
and within the context of other similar words. Note that the basis for this word vector space is
arbitrary and has no meaning; distances between word embeddings are only well-defined in relation
to one another and a different training instance of the same data would yield different word vectors
but very similar pairwise distances between word vectors.

Our method for backing out a geometric representation of the “meaning” of a document in
(7) is to construct a weighted average of the meaning of all words in the document. Thus our
vector representation of documents retains the 300-dimensional structure of the individual word
constituents; these vectors are much denser and smaller than the very large and sparse document
vectors in the standard bag of words methodology. In brief, there are two key characteristics that
differentiate our approach relative to bag of words techniques. First, Xi is no longer a sparse
vector like Vi. Moreover, because of the way word vectors are estimated, our method allows vectors
containing similar words to be “close” to one another. Thus, relative to the bag of words approach
our method: (1) constitutes a large dimensionality reduction; and, (2) can incorporate a notion of
synonyms/distances between word meanings.

Armed with a vector representation of the document that accounts for synonyms, we next use
the cosine similarity to measure the similarity between patent i and occupation j:

Simi,j = Xi

||Xi||
· Xj

||Xj ||
(A.5)

This is the same distance metric as the bag of words approach, except now Xi and Xj are dense
vectors carrying a geometric interpretation akin to a weighted average of the semantic meaning of
all nouns and verbs in the respective documents.

To illustrate the difference between our approach and the standard bag of words, consider the

69



following example of two documents, with the first document containing the words ‘dog’ and ‘cat’
and the other containing the words ‘puppy’ and ‘kitten’. Even though the two documents carry
essentially the same meaning, the bag of words approach will conclude that they are distinct: the
representation of the two documents is

V1 = [1, 1, 0, 0], and V2 = [0, 0, 1, 1] (A.6)

which implies that the two documents are orthogonal, ρ1,2 = 0. Here, the TF-IDF weights in our
simple example satisfy TF1,dog = 1/2 and IDFdog = log(2), with similar logic applying to “cat”;
this proceeds analogously for document 2 containing “puppy” and “kitten”.

By contrast, in the word embeddings approach, these two documents are now represented as

X1 = (1/2)× log(2)xdog + (1/2)× log(2)xcat (A.7)

and similarly for X2. Here xdog, xcat would have been trained using the Pennington et al. (2014)
method described above on a very large outside set of documents. Hence, in this case since word
vectors are estimated such that xdog ≈ xpuppy and xcat ≈ xkitten, we now have Sim1,2 ≈ 0.81 using
the word vectors estimated by Pennington et al. (2014). A weighted average word embedding
approach has been shown in the natural language processing literature to achieve good performance
on standard benchmark tests for evaluating document similarity metrics relative to alternative
methods that are much more costly to compute (see, e.g. Arora, Liang, and Ma, 2017). A relative
disadvantage is that it ignores word ordering—which also applies to the more standard ‘bag of
words’ approach for representing documents as vectors. However, since we have dropped all stop
words and words that are not either a noun or a verb, retaining word ordering in our setting is far
less relevant.

Last, our methodology bears some similarities to recent work by Webb (2019), who also analyzes
the similarity between a patent and O*NET job tasks. Webb (2019) focuses on similarity in
verb-object pairs in the title and the abstract of patents with verb-object pairs in the job task
descriptions and restricts his attention to patents identified as being related to robots, AI, or
software. He uses word hierarchies obtained from WordNet to determine similarity in verb-object
pairings. By contrast, we infer document similarity by using geometric representations of word
meanings (GloVe) that have been estimated directly from word co-occurence counts. In addition to
employing a different methodology, we also have a broader focus: we compute occupation-patent
distance measures for all occupations and the entire set of USPTO patents since 1836. Furthermore,
we use not only the abstract but the entirety of the patent document—which includes the abstract,
claims, and the detailed description of the patented invention.
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A.3 Constructing the Industry Innovation Measure

For each breakthrough patent p we assign it to an industry using probabilistic patent CPC tech class
to NAICS crosswalks constructed by Goldschlag et al. (2020). The Goldschlag et al. (2020) crosswalk
assigns probabilities that patents from a given technology class originated from a particular NAICS
industry for different levels of NAICS aggregation. The NBER manufacturing database reports data
the 6-digit NAICS code level, and so we use the Goldschlag et al. (2020) 6-digit NAICS to 3-digit
CPC probabilistic crosswalk. We then aggregate the data to the 4-digit NAICS level to parallel the
level of industry classification we use in our analysis in 3.2 of the main text.

Label the set of breakthrough patents issued in year t by Γt; αj,p the probability of breakthrough
patent p being issued to industry j, and κt the US population in year t. We then define the
industry-level breakthrough patent index (including only patents with high average textual similarity
to the industry workforce) by

ψj,t = 1
κt

∑
p∈Γt

αj,p) (A.8)

A.4 Census public-use data

We gather Census data from IPUMS and compute aggregate employment shares for occupations in
Census years spanning 1850-2010. We use the 1950 Census occupation definition for pre-1950 Census
years since the more updated 1990 Census classification scheme is only available in post-1950 Census
years. We make use of the 1990 Census occupation classifications for the years they are available.
We then crosswalk Census occupations to the David Dorn occ1990dd classification scheme using the
crosswalk files provided on his website and aggregate our measure ηi,t to the occ1990dd-level by
averaging across 6-digit SOC codes within an occ1990dd code. This results in a Census-year by
occ1990dd panel of occupation employment shares. Census records for the year 1890 were destroyed
in a fire, and so the employment growth observations for the 20-year horizon in 1870 or for the
10-year horizon in 1880 are not available.

For the post-1980 results, we use the Current Population Survey Merged Outgoing Rotation
Groups (MORG). We obtain the cleaned versions of MORG extracts provided by the Center for
Economic Policy Research (CEPR). We use the “wage3” variable that combines the usual hourly
earnings for hourly workers and non-hourly workers, which adjusts for top-coding using a lognormal
imputation and is constructed to match the NBERâĂŹs recommendation for the most consistent
hourly wage series from 1979 to the present. Using these data we construct a time series of wage
and employment growth for occupations at the occ1990dd level. Because occ1990dd cannot be
crosswalked to a balanced panel of occupations using the Census 1970 occupation codes, we start our
analysis in the post-1982 time period when these extracts began using the 1980 Census occupation
classification scheme.
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A.5 Census-CPS administrative data

We use a random sample of individual workers tracked by the Current Population Survey (CPS)
and their associated Detailed Earnings Records from the Census—which contains their W2 tax
income. We limit the sample to individuals who are older than 25 and younger than 55 years old.

The CPS includes information on demographic information such as age and gender, but more
importantly occupation at the time of the interview. We assign workers to occupations based on
their response to the CPS survey (CPS “occ” variable). We construct a crosswalk between the yearly
CPS occupations codes and the occ1990dd classification scheme and assign all CPS occupations
their corresponding occ1990dd code. We assign this occupation to the worker for the next 5 years,
thus effectively dropping observations where the CPS interview date is older than 5 years—so that
the occupation information is relatively recent.

We merge the individual worker records from the Census-CPS matched sample to patent data at
the industry (NAICS 4) level. Specifically, we identify the industry of where the patent origination
by relying on the Census SSEL patent–assignee database, which provides a corresponding SSEL firm
identifier (“firmid"), which we then use to obtain the firms’ 4-digit NAICS code. In particular, we use
two SSEL patent–assignee crosswalks: the newer Business Dynamics Statistics of Patenting Firms
database (BDSâĂŘPF) and an older patent-SSL crosswalk created by Kerr and Fu (2008). The
BDSâĂŘPF links are available starting with the 2000 SSL. We use the BDSâĂŘPF firmid-patent
links for any patents for which it is available. Otherwise we rely on the links from Kerr and Fu
(2008) created from the 1999 SSL. In cases where a firmid matches to multiple NAICS codes we
apply the 4-digit NAICS code of highest employment. We drop any industry-year observations with
no patents filed in a given year.

To allow the effects to vary with prior income, we assign workers into five groups based on
their average income over the last three years (the last term in (18)) compared to workers in the
same occupation and NAICS4 industry. These groups are defined based on the following percentiles
of prior income [0%, 25%), [25%, 50%), [50%, 75%), [75%, 95%), [95%, 100%] calculated within
industry–occupation cells. In the (uncommon) case when NAICS4 industries have cells which
are too small to rank, we broaden the industry definition from 4 digit NAICS to 2 digit NAICS.
Subsequently, any Industry–Occupation cells with fewer than 10 individuals are dropped.

A.6 Constructing a Statistical Displacement Factor

To construct our predictor we use a method proposed by Cong et al. (2019), which is well-suited to
prediction exercises using large-scale textual data. Our adaptation of their method for the task of
predicting occupation outcomes can be summarized in the following steps. Let the number of patent
documents be Np (where we restrict just to the set of breakthrough patents from Kelly et al. (2020)
as described in section 2), the number of occupation task descriptions be No, and the number of
words in the vocabulary formed from the union of all patent and occupation documents be Nw:

1. Perform approximate nearest neighbor search using a locality-sensitive hashing routine (LSH)
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on vector representations of word meanings to form K clusters (“topics”) of related words.
Label the kth cluster of words Ck.

2. Create a Np × Nw matrix of breakthrough patent documents by word counts weighted by
term-frequency inverse document frequency (TF-IDF), computed over all patents (i.e. TF-IDF
is computed also including non-breakthrough patents). Call this matrix A. Loop over each
word cluster Ck from step 1 for k = 1, . . . ,K, and extract the submatrix of A formed by taking
the columns in A corresponding to the words contained in cluster Ck. Call this submatrix Ak.
Perform a singular-value decomposition of Ak and take its top singular value vk (in absolute
value) and corresponding top right singular vector Vk. Then take the Np×1 vector Pk = |Akvk|

v′
k
vk

to be the loadings of each patent document on topic/word cluster k. Retain only the clusters
Ck which rank in the top 500 based on their top absolute singular values.

3. Perform step 2 for all occupations, except only for the top 500 clusters that were retained.
Call the resulting No × 1 vector of occupation loadings Ok. Denote the set breakthrough
of patents issued in year t by Γ̂t. Let Ok,i represent the ith element of Ok and Pk,j the jth
element of Pk, the vector of patent loadings on cluster k. Then occupation i’s exposure to the
kth topic in year t is given by

ψi,k,t = Ok,i
κt

∑
j∈Γ̂t

Pk,j (A.9)

As before we only sum over breakthrough patents and normalize by U.S. population in year t
(denoted by κt). This yields an occupation’s exposure in each year to the 500 topics which are found
to be the most important among the breakthrough patents. Though equation A.9 looks a bit like
our construction of ηi,t in equation 12, it differs in that we no longer directly use word vectors to
compute similarities. Instead, the Cong et al. (2019) technique only uses the word vectors to give
an educated guess on the topics contained in the set of documents. Thus occcupations are similar
to a given topic when they contain words that are also found in that topic.

We focus on the period of time covered by our CPS merged outgoing rotation group sample
(1985-2018) used in the employment regressions in Figure 8. This is for two reasons: first, this is the
period where our employment and wage data coverage is most comprehensive, with a yearly time
series and relatively stable occupation classifications. Second, the task composition of innovations
has begun to change in this period of time relative to all previous innovation waves. In particular,
cognitive skills have started to become more related to innovations, and this has been driven by the
rising importance of information technology and electronics patents, which was not the case prior to
the late 20th century. If skill-biased technological change has complemented the skillset of cognitive
occupations, then innovations related to these occupations may be complementary to rather than a
substitute for their skills. Thus if our measure mixes these two channels it is particularly likely to
occur during this period of time.

Steps 1 and 2 above simply group documents into topics of related terms, compute how related a
given topic is to each individual document, and provide an estimate of how important each topic is
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to the overall set of documents. Justification for the use of LSH clustering of word vectors to obtain
topics and the singular value decomposition to infer topic importance/document topic loadings are
discussed at length in Cong et al. (2019), to which we refer the interested reader for further details.
For our purposes it suffices that by performing steps 1 through 3 we are able to obtain a panel of
500 predictors at the occupation-by-year level and which represent exposures to topics of words
which are particularly relevant to patents.

In brief, this approach can be summarized as follows. We first extract the 500 most important
common factors (topics) from the text of breakthrough patents using the approach of Cong et al.
(2019) and the vector representations of word embedings discussed in Section 2. We then use
these 500 textual factors to form a single predictor that is optimized to predict occupation declines
in-sample. To do so, we examine the univariate performance of each factor in predicting employment
declines, and then form a linear combination (the first principal component) of the predictors that
are statistically significant negative predictors at the 5%. We also construct a labor-enhancing
factor using the converse exercise.

Appendix Table A.7 summarizes our findings. By design, both factors predict employment with
the correct sign in-sample. More importantly, both of these factors predict wage growth with the
same sign, despite the fact that they were not designed to do so and wage growth is not highly
correlated with employment growth. That said, the displacement factor (the factor calibrated for
employment declines) is a much stronger predictor of both employment and wage growth than its
counterpart designed to predict positive employment growth.

In terms of magnitudes, the employment and wage declines predicted by this statistical displace-
ment factor are comparable to our baseline measure—that is, 1.25% vs 1.12% employment declines
at the 10-year horizon and 0.25% vs 0.20% decline in wage earnings). The correlation between our
baseline measure ηi,t and the statistical predictor constructed to represent exposure to labor-saving
technologies is approximately 73 percent. By contrast, the correlation with the factor calibrated to
predict employment increases is negative at -11 percent.

A.7 Model Appendix

The model we use consider a continuum of workers, with a state parameter θ on the [0, 1] interval,
corresponding to their ability to produce H. Share sh of workers have the ability to accumulate
H over time, and have H reset by a certain amount when new technology enters the playing field.
Technology is given by ξ and has shocks of size κ, which (in expectation) displaces the human
capital of α share of workers, reducing their θ by m.

Production is given by a nested CES production function, where composite good X is produced
via a combination of L and ξ

X = (ξρλ+ Lρ(1− λ))(1/ρ) .
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Output, Y , is produced as a combination of X and H:

Y = (µHσ + (1− µ)Xσ)(1/σ) .

Technology evolves with process
ξt = (1− g)ξt−1 + κ dNt

where dN is a random variable with expectation ω.
Worker i ∈ sh has evolving human capital such that

θi,t = mθi,t−1 dMi,t − di,t h θi,t−1.

In this case, dM is a random variable representing human capital acquisition, m is the size of
the jump relative to initial human capital, dN is the same shock variable as in the equation for
technology, and h− is the scale of the loss of human capital (H) if a shock occurs. di,t is an i.i.d.
binomial random variable with expectation E(d) = α, indicating whether someone is "exposed" to a
technology shock or not. If you are exposed to a technology shock when one occurs, you experience
the human capital loss, otherwise you do not.

We solve the model in discrete time, with a monthly time-step δt, and we approximate the
continuum of workers with an exponentially increasing, finite grid of points on the [0, 1] interval.
Since we are approximating a continuum of workers, each gridpoint has an infinite number of
observations, and we can work directly with expectations when solving the model. This means for a
given starting grid point on the θ interval, we have

E(θi,t) = θi,t−1 +mφθi,t−1 − αh θi,t−1

Note that in discrete time, the technology and human capital processes admit a two-state Markov-
Switching VAR representation with a shock state (s = 0) and a no-shock state s = 1. Let i index
the starting gridpoint of a worker, with i+ 1 and i− 1 being the adjacent gridpoints.

With some abuse of notation, instead of thinking of θi,t as a single worker on the grid, we can
think of it as the probability mass (share of workers) on a gridpoint i.

E(θi,t|s = 0) = θi,t−1 − φθi+1,t−1 + φθi−1,t−1

This works because we set the distance between gridpoints is m. If we have a shock, we have

E(θi,t|s = 1) = θi,t−1 − φθi+1,t−1 + φθi−1,t−1 − αθi,t−1) + αh θi+m,t−1).

In other words, if we experience a shock, we get some mass from the gridpoint which is mh above
us, lose share α of our previous density as exposed workers, lose share φ to a higher gridpoint as
workers acquire new skills, and gain share φ from the gridpoint below.

We can represent this as a VAR process, with transition probability α to a gridpoint which is
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mh− points below the current, φ to a gridpoint above us, and so on. In practice, in order to make
h− a continuous parameter, we split the fall probability across the two relevant gridpoints, with
density allocated between them to make the fall have expectation h−. For example, if m was 3%,
and we needed a 5% fall, conditional on the fall a worker would have (roughly) a 2/3 chance of
falling two gridpoints and a 1/3 chance of falling 1 gridpoint.

The transition process for the workers in sl is very simple, as it is an absorbing state with no
entry or exit. So

θsl,t = θsl,t−1

in both shock periods and no-shock periods.
The transition process for ξ is given by

ξt|st = 0 = (1− g)ξt−1

and
ξt|st = 1 = (1− g)ξt−1 + κ.

Suppose we set up the VAR coefficient matrices, A, accordingly. Each period has probability ω of
experiencing a shock, and probability 1− ω of not experiencing a shock. This gives us transition
process

E(At) = (1− ω)At−1,0 + ωAt−1,1.

Bianchi (2016) demonstrates how to find the steady state of the Markov-Sitching VAR model.
For this exposition, we rely on his notation. He considers the MS-VAR process

Zt = cξt +AξtZt−1 + Vξtεt,

and
Vξt = RξtΣξt ,

where zt is a vector of variables, ct is a vector of constants,
In practice, our process for the mass of θ has a reflecting barrier at 1, and in order to enforce

the sum-to-1 constraint for the total mass on the θ grid we represent the VAR through a VECM
process.

We then solve for the steady state by finding the largest real eigenvalue of the Bianchi represen-
tation of the MS-VAR system. Because we have an absorbing state at the bottom of the θ grid
whose density is a known value (fixed before calibration), we exclude that point from the solution,
scaling down the intercept term by 1− sl. Finally, to compute the value at the top of the θ grid
(call it gridpoint j), we simply compute 1−

∑
i j θss,i − sl.

Once we’ve solved for the ergodic steady state, we can begin calculating the model moments
which correspond to our empirical calibration targets. Our process sets time step δt to one month.
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Our theoretical moments are calculated as one-month impact responses, scaled by an annualization
factor

√
12ω(1− ω) for aggregate moments (labor share and output), and

√
12ωα(1− ωα).

Impact responses for labor share and output are calculated relative to the ergodic steady state
for all state variables. The steady state values are iterated forward one period using the transition
matrices constructed above, but where a shock happens with certainty (effectively setting ω = 1
for a single period). To compare output, labor share, wages, and other desired targets, between
the values at the ergodic steady state relative to the shock period, we follow this procedure in each
period. First, we calculate the level of H at the steady state as

H =
N∑
i=1

θim(θi)

where m(thetai) is the mass of theta at gridpoint i. The workers in sl produce no H, so this is
sum of the value for θ at each gridpoints times the mass of workers at that rung of the ladder. L
is calculated as 1 −H. Output Y and the composite good X are calculated with the equations
provided above. σ, ρ, µ, and λ are free parameters. If we call ξ∗ the value of the technology state
variable at the ergodic steady state, ξ post-shock is ξ∗ + κ, where κ is a free variable. Wages
associated with H (wh) and L (wl) are calculated as the marginal product of each task. Given
output, these are calculated as

wh =(1− µ)µHσ−1(λξρ − Lρ(λ− 1))(σ/ρ) + µHσ)(1/σ)

(1− µ)(λξρ − Lρ(λ− 1))(σ/ρ) + µHσ
,

and

wl = (1− µ)(λξρ − Lρ(λ− 1))(σ/ρ) + µHσ)(1/σ)(λ− 1)(λξρ − Lρ(λ− 1))(σ/ρ)(µ− 1)Lρ−1

(λξρ + (1− λ)Lρ)((1− µ)(λξρ − Lρ(λ− 1))(σ/ρ) + µHσ)

For each period in question for the impact responses, wages are calculated by plugging in
the relevant state variables. Impact responses are calculated in log differences to align with our
calibration targets (e.g. log Yshock − log Yss), and subsequently scaled by the annualization factor.
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Appendix Figures and Tables

Table A.1: Most Similar Patents For Select Occupations

Cashiers (SOC Code 412011)

5055657 Vending type machine dispensing a redeemable credit voucher upon payment interrupt

5987439 Automated banking system for making change on a card or user account

5897625 Automated document cashing system

6012048 Automated banking system for dispensing money orders, wire transfer and bill payment

5598332 Cash register capable of temporary-closing operation

Loan Interviewers and Clerks (SOC Code 434131)

6289319 Automatic business and financial transaction processing system

5611052 Lender direct credit evaluation and loan processing system

6233566 System, method and computer program product for online financial products trading

5940811 Closed loop financial transaction method and apparatus

5966700 Management system for risk sharing of mortgage pools

Railroad Conductors (SOC Code 534031)

5828979 Automatic train control system and method

6250590 Mobile train steering

3944986 Vehicle movement control system for railroad terminals

6135396 System and method for automatic train operation

5797330 Mass transit system
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Table A.2: Most Similar Occupations For Select Patents

“Knitting-machine” (Patent No. 276146, Issued in 1883)

Textile Knitting and Weaving Machine Setters, Operators, and Tenders

Sewing Machine Operators

Sewers, Hand

Fabric Menders, Except Garment

Textile Winding, Twisting, and Drawing Out Machine Setters, Operators, and Tenders

“Metal wheel for vehicles” (Patent No. 1405358, Issued in 1922)

Automotive Service Technicians and Mechanics

Cutting, Punching, and Press Machine Setters, Operators, and Tenders, Metal and Plastic

Maintenance Workers, Machinery

Grinding, Lapping, Polishing, and Buffing Machine Tool Setters, Operators, and Tenders,

Metal and Plastic

Rolling Machine Setters, Operators, and Tenders, Metal and Plastic

“System for managing financial accounts by a priority allocation of funds among accounts”

(Patent No. 5911135, Issued in 1999)

Financial Managers

Credit Analysts

Loan Interviewers and Clerks

Accountants and Auditors

Bookkeeping, Accounting, and Auditing Clerks
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Table A.3: Occupations Most and Least Exposed to Innovation

Top 5 Occupations by Average ηi,t Bottom 5 Occupations by Average ηi,t

Inspectors, Testers, Sorters, Samplers, and Weighers Mental Health Counselors

Metal Workers and Plastic Workers, All Other Dancers

Cutting, Punching, and Press Machine Setters,
Operators, and Tenders, Metal and Plastic

Funeral Attendants

Production Workers, All Other Judges, Magistrate Judges, and Magistrates

Electromechanical Equipment Assemblers Clergy
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Table A.4: Unconditional Correlations of ηi,t With Task Categories

NR Cog (Analytical) -0.12∗∗
(-2.53)

NR Cog (Interpersonal) -0.16∗∗∗
(-4.65)

NR Man (Physical) 0.24∗∗∗
(5.65)

NR Man (Interpersonal) -0.33∗∗∗
(-8.43)

Routine Cognitive 0.033
(0.95)

Routine Manual 0.24∗∗∗
(5.74)

This figure plots the correlations of ηi,t with the occupation task types computed from O*NET
in Acemoglu and Autor (2011). Correlations are weighted by the Acemoglu and Autor (2011)
occupation employment weights used to normalize the distribution of tasks to mean zero and
standard deviation one.
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Table A.5: Technology And Employment Over the Long Run (1850-2010)–Subsamples

A. Early Sample B. Later sample

Occ. Occ.×Ind. Occ. Occ.×Ind.
1850–1920 1910–1950 1930–1990 1950–1990

Technology Exposure, ηi,t -0.66∗∗ -0.60∗∗ -1.10∗∗∗ -1.41∗∗∗ -0.80∗∗∗ -0.69∗∗∗ -0.59∗∗∗ -0.64∗∗∗
(-2.19) (-2.24) (-3.61) (-3.65) (-4.13) (-4.39) (-3.00) (-3.45)

Observations 968 776 25,712 14,945 1,606 1,432 55,297 39,717
R2 (Within) 0.027 0.031 0.021 0.036 0.054 0.124 0.009 0.011
Controls
Time FE Y Y Y Y
Industry X Time FE Y Y Y Y
Lagged Dependent Variable Y Y Y Y

Note: The table above reports results from regressions of the form

1
k

(
log Yi,t+k − log Yi,t

)
= α0 + αt + β(k)ηi,t + ρ (log Yi,t − log Yi,t−k) + εi,t

for k = 10, 20 years for Census years spanning from 1850–2010. Here Yi,t is the occupation i’s share in total non-farm employment in Census year t. The main
variable of interest is ηi,t, our technology exposure measure (normalized to unit standard deviation). Employment growth rates is in annualized percentage terms.
Standard errors are clustered by occupation and corresponding t-stats are shown in parentheses. Observations are weighted by occupation employment share at time t.
Census year 1870 does not show up in the first column of the 20-year subsample regressions because the 1890 Census records no longer exist.
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Table A.6: Technology And Employment During and Outside of Innovation Waves

Innovation Wave Other Years

Technology Exposure, ηi,t -0.82∗∗∗ -0.53
(-5.92) (-1.54)

Time FE X X
N 1106 1468
R2 (Within) 0.091 0.018

The table above plots results from regressions of the form

log(Yi,t+k)− log(Yi,t) = α0 + αt + βηi,t + εi,t

for k = 20 years for Census years spanning from 1850-2000. Here Yi,t is occupation’s share in total
non-farm employment. ηi,t is standardized and growth rates are in annualized percentage terms.
The sample is split into periods of innovation waves as identified by the breakthrough patent index
of Kelly et al. (2020). The 20 year periods beginning in years 1880, 1910, 1920, and 1980, 1990
are labelled innovation waves with the remaining years representing non-innovation wave periods.
Standard errors are clustered by occupation and corresponding t-stats are shown in parentheses.
Observations are weighted by occupation employment share at time t.
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Figure A.1: Sample Patent Topic Word Clusters

The above are four of the topics resulting from the LSH approximate nearest neighbors routine used
to separate words into clusters as described in section 3.3. The relative size of the word corresponds
to the importance of that word within the topic.
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Table A.7: Predictive Performance of 10-Year Employment and Wage Growth on Predictors Constructed
From Patent Topics

Panel A: Negative Constructed Predictor

Employment Growth Wage Growth
ξMean -1.25∗∗∗ -0.21∗∗∗

(-6.79) (-6.10)

ξPC1 -1.09∗∗∗ -0.20∗∗∗
(-6.32) (-6.11)

Year FEs X X X X
Controls X X X X

Panel B: Positive Constructed Predictor
Employment Growth Wage Growth

γMean 0.59∗∗∗ 0.019
(3.84) (0.70)

γPC1 0.50∗∗∗ 0.0062
(3.67) (0.24)

Year FEs X X X X
Controls X X X X

The tables above show coefficients from panel regressions of annualized wage and income growth
rates over the 10-year horizon on textual factors constructed to predict employment as described in
section 3.3. Regressions are of the form

yi,t+k − yi,t = α+ βZi,t + δXi,t + εi,t

For Zi,t = ξi,t (“labor-saving”) or γi,t (“productivity enhancing”). Controls Xi,t include three
one-year lags of dependent variable, time fixed effects, wage, and occupation employment share.
Subscripts PC1 and Mean denote versions computed using either the first principal component or
cross-sectional mean across individual textual predictors derived from the patent topics identified
by the Cong et al. (2019) method. Dependent variable is expressed in annualized percentage terms
and ηi,t is standardized. Standard errors are clustered by occupation and independent variables are
standardized. Observations are weighted by occupation’s employment share at time t. The sample
uses CPS merged outgoing rotation group data starting in 1982.
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Table A.8: Correlations Between Predictors Constructed From Patent Topics and Different Versions of
Occupation Technology Exposure ηi,t

All Patents Drop ICT Patents Just ICT Patents

ξMean 0.73∗∗∗ 0.88∗∗∗ 0.41∗∗∗
(20.53) (31.71) (10.21)

γMean -0.11∗∗∗ -0.17∗∗∗ -0.030
(-5.26) (-6.39) (-1.13)

This table reports correlations between versions of technology exposure ηi,t formed using different
sets of patents and the composite predictors constructed from textual factors using the Cong et al.
(2019) method to predict employment outcomes either negatively (ξMean) or positively (γMean).
The “Mean” label denotes versions of composite predictors constructed by taking the cross-sectional
means across individual textual factors which predict employment either negatively or positively.
The first two columns represent the baseline measure of ηi,t constructed using all patents; the next
two columns drop ICT patents, defined to be those falling under the instruments/information or
electronics categories; finally, the last two columns form ηi,t only using ICT patents.
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Table A.9: Breakthrough patents most related to tasks performed by order-fulfillment clerks

US. Pat. # Distance (ρ̃) Issue Year Title

5,696,906 0.933 1997 Telecommunication user account management system and method
5,627,973 0.915 1997 Method and apparatus for facilitating evaluation of business opportunities for supplying goods and/or services to potential customers
5,689,705 0.896 1997 System for facilitating home construction and sales
5,592,560 0.885 1997 Method and system for building a database and performing marketing based upon prior shopping history
5,687,212 0.885 1997 System for reactively maintaining telephone network facilities in a public switched telephone network
5,628,004 0.881 1997 System for managing database of communication of recipients
5,621,812 0.880 1997 Method and system for building a database for use with selective incentive marketing in response to customer shopping histories
5,638,457 0.880 1997 Method and system for building a database for use with selective incentive marketing in response to customer shopping histories
5,659,469 0.879 1997 Check transaction processing, database building and marketing method and system utilizing automatic check reading
5,592,378 0.874 1997 Computerized order entry system and method
5,787,405 0.896 1998 Method and system for creating financial instruments at a plurality of remote locations which are controlled by a central office
5,802,513 0.884 1998 Method and system for distance determination and use of the distance determination
5,717,596 0.878 1998 Method and system for franking, accounting, and billing of mail services
5,797,002 0.873 1998 Two-way wireless system for financial industry transactions
5,812,985 0.866 1998 Space management system
5,774,877 0.866 1998 Two-way wireless system for financial industry transactions
5,848,396 0.865 1998 Method and apparatus for determining behavioral profile of a computer user
5,790,634 0.865 1998 Combination system for proactively and reactively maintaining telephone network facilities in a public switched telephone system
5,734,823 0.864 1998 Systems and apparatus for electronic communication and storage of information
5,712,987 0.864 1998 Interface and associated bank customer database
5,995,976 0.912 1999 Method and apparatus for distributing supplemental information related to printed articles
6,006,251 0.897 1999 Service providing system for providing services suitable to an end user request based on characteristics of a request, attributes of a service and operating

conditions of a processor
5,930,764 0.889 1999 Sales and marketing support system using a customer information database
5,884,280 0.886 1999 System for and method of distributing proceeds from contents
5,991,728 0.884 1999 Method and system for the tracking and profiling of supply usage in a health care environment
5,903,873 0.876 1999 System for registering insurance transactions and communicating with a home office
5,991,876 0.875 1999 Electronic rights management and authorization system
5,953,389 0.869 1999 Combination system for provisioning and maintaining telephone network facilities in a public switched telephone network
5,893,075 0.868 1999 Interactive system and method for surveying and targeting customers
5,932,869 0.867 1999 Promotional system with magnetic stripe and visual thermo-reversible print surfaced medium
6,041,319 0.876 2000 Method and system for telephone updates of postal scales
6,061,506 0.874 2000 Adaptive strategy-based system
6,072,493 0.869 2000 System and method for associating services information with selected elements of an organization
6,105,003 0.864 2000 Customer data processing system provided in a showroom
6,070,160 0.854 2000 Non-linear database set searching apparatus and method
6,023,705 0.854 2000 Multiple CD index and loading system and method
6,154,753 0.846 2000 Document management system and method for business quality modeling
6,064,879 0.845 2000 Mobile communication method, and mobile telephone switching station customer management system, and mobile unit for implementing the same
6,112,181 0.842 2000 Systems and methods for matching, selecting, narrowcasting, and/or classifying based on rights management and/or other information
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Table A.10: Worker Earnings and Technology Exposure, by Prior Income and Education / Age

Income Percentile

(1) (2) (3) (4) (5)

Age Education
25–35 35–45 45–55 College No Coll

A. Cond. Mean, E[g], by Horizon

0 to 25-th -1.05 -1.72 -2.03 -2.14 -1.11
(-2.57) (-6.36) (-5.06) (-6.32) (-3.58)

25 to 50-th -0.28 -0.87 -2.24 -0.92 -1.11
(-0.97) (-2.89) (-3.18) (-2.72) (-4.40)

50 to 75-th -0.57 -0.68 -2.43 -0.82 -1.60
(-1.46) (-2.09) (-3.32) (-2.02) (-4.36)

75 to 95-th -0.39 -0.49 -2.22 -0.60 -2.13
(-0.53) (-1.56) (-4.73) (-1.37) (-7.52)

95 to 100-th -3.07 -1.85 -2.86 -1.98 -3.50
(-4.22) (-3.07) (-3.51) (-4.10) (-4.47)

B. Risk, Absolute Income Growth E[|g|]

0 to 25-th 0.01 -0.55 0.06 -0.51 -0.18
(0.04) (-2.13) (0.18) (-1.74) (-0.77)

25 to 50-th 0.20 -0.17 0.55 0.12 0.03
(0.68) (-0.81) (0.83) (0.48) (0.11)

50 to 75-th 0.42 0.06 1.17 0.50 0.49
(1.66) (0.31) (1.86) (1.85) (1.44)

75 to 95-th 0.61 0.12 1.51 0.66 1.01
(1.56) (0.45) (3.84) (2.87) (2.94)

95 to 100-th 2.38 1.44 2.38 2.01 2.09
(3.05) (3.03) (3.92) (6.02) (2.76)

C. Skewness, Prob. Large Income Decline p(g < p10)

0 to 25-th 0.18 0.25 0.68 0.40 0.20
(0.99) (1.93) (4.37) (2.5) (1.39)

25 to 50-th 0.07 0.16 0.73 0.24 0.28
(0.3) (0.86) (2.42) (1.37) (1.34)

50 to 75-th 0.18 0.16 0.91 0.26 0.56
(1.26) (1.08) (3.05) (1.82) (4.03)

75 to 95-th 0.07 0.05 0.90 0.15 0.83
(0.28) (0.27) (3.99) (0.87) (6.28)

95 to 100-th 2.42 0.68 1.46 1.14 1.53
(4.52) (2.24) (4.43) (4.56) (4.89)

Note: Panel A shows the estimated slope coefficients (times 100) from equation (21) in the main text: the dependent
variable is worker earnings growth over a 5-year horizon; the main independent variable of interest is a worker’s
technology exposure ηi,t. The slope estimate β(h) is allowed to vary with the worker’s prior income rank and age
(columns (1) to (3)) or education (columns (4) to (5)). Panel B shows the slope coefficients of a variant of the above
specification where we replace the dependent variable gi,t:t+h with its absolute value |gi,t:t+h|. Panel C replaces the
dependent variable with a dummy that takes the value of one if gi,t:t+h lies in the bottom 10-th percentile. See notes
to Tables 3 to 5 for additional details.
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Table A.11: Worker Earnings and Technology Exposure, by Education

Horizon Education (1) (2) (3) (4)

3 Years College -0.975 -0.880 -0.924 -0.911
(0.26) (0.246) (0.292) (0.274)

No College -1.32 -1.27 -1.30 -1.30
(0.153) (0.168) (0.253) (0.233)

No College - College -0.347 -0.391 -0.378 -0.388
(0.209) (0.197) ( 0.199) ( 0.192)

5 Years College -1.35 -1.17 -1.20 -1.14
(0.291) (0.282) (0.362) (0.343)

No College -1.68 -1.55 -1.54 -1.50
(0.216) (0.225) (0.31) (0.291)

No College - College -0.336 -0.387 -0.332 -0.3603
(0.2315) (0.225) (0.230) (0.225)

10 Years College -1.24 -1.08 -1.31 -1.21
(0.352) (0.343) (0.504) (0.486)

No College -1.82 -1.67 -1.85 -1.76
(0.281) (0.262) (0.404) (0.393)

No College - College -0.581 -0.581 -0.544 -0.550
(0.283) (0.274) (0.290) (0.283)

Fixed Effects:
Industry X X
Occupation X X
Year X
Industry x Year X X
Occupation x Year X X
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Table A.12: Worker Earnings and Technology Exposure, by Age

Worker Age Horizon (1) (2) (3) (4)

3 Years 25-35 -0.479 -0.396 -0.389 -0.388
(0.268) (0.244) (0.224) (0.209)

35-45 -0.903 -0.83 -0.866 -0.857
(0.18) (0.159) (0.181) (0.164)

45-55 -1.98 -1.91 -1.96 -1.95
(0.392) (0.42) (0.542) (0.524)

(45-55) - (25-35) -1.50 -1.51 -1.57 -1.56
(0.428) (0.441) (0.463) (0.462)

5 Years 25-35 -0.874 -0.706 -0.683 -0.64
(0.243) (0.227) (0.271) (0.251)

35-45 -1.23 -1.08 -1.09 -1.04
(0.148) (0.148) (0.221) (0.204)

45-55 -2.44 -2.29 -2.3 -2.25
(0.535) (0.542) (0.656) (0.634)

(45-55) - (25-35) -1.56 -1.59 -1.62 -1.61
(0.489) (0.494) (0.516) (0.512)

10 Years 25-35 -0.986 -0.823 -1.01 -0.918
(0.291) (0.266) (0.397) (0.38)

35-45 -1.43 -1.26 -1.47 -1.37
(0.238) (0.228) (0.39) (0.377)

45-55 -2.54 -2.40 -2.60 -2.51
(0.682) (0.676) (0.861) (0.832)

(45-55) - (25-35) -1.56 -1.58 -1.59 -1.59
(0.565) (0.564) (0.579) (0.574)

Fixed Effects:
Industry X X
Occupation X X
Year X
Industry x Year X X
Occupation x Year X X
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Table A.13: Worker Earnings and Technology Exposure, by Prior Income

Horizon Income Rank (1) (2) (3) (4)

3 Years [0, 25) -1.34 -1.21 -1.28 -1.24
(0.236) (0.239) (0.207) (0.216)

[25, 50) -0.934 -0.811 -0.883 -0.849
(0.145) (0.167) (0.212) (0.205)

[50, 75) -1.10 -0.974 -1.05 -1.01
(0.241) (0.244) (0.304) (0.289)

[75, 95) -1.14 -1.00 -1.09 -1.05
(0.28) (0.266) (0.26) (0.256)

[95, 100] -2.31 -2.20 -2.25 -2.24
(0.421) (0.422) (0.374) (0.366)

5 Years [0, 25) -1.76 -1.51 -1.56 -1.49
(0.234) (0.258) (0.267) (0.281)

[25, 50) -1.26 -1.02 -1.08 -1.01
(0.186) (0.21) (0.281) (0.282)

[50, 75) -1.43 -1.19 -1.24 -1.18
(0.33) (0.323) (0.395) (0.383)

[75, 95) -1.42 -1.17 -1.24 -1.17
(0.328) (0.315) (0.345) (0.339)

[95, 100] -2.71 -2.48 -2.52 -2.47
(0.578) (0.574) (0.516) (0.52)

10 Years [0, 25) -2.05 -1.74 -2.00 -1.85
(0.36) (0.337) (0.395) (0.393)

[25, 50) -1.14 -0.858 -1.1 -0.964
(0.338) (0.349) (0.474) (0.472)

[50, 75) -1.19 -0.90 -1.16 -1.01
(0.414) (0.40) (0.578) (0.541)

[75, 95) -0.986 -0.686 -0.967 -0.807
(0.445) (0.436) (0.527) (0.492)

[95, 100] -2.46 -2.20 -2.42 -2.28
(0.589) (0.594) (0.611) (0.596)

Fixed Effects:
Industry X X
Occupation X X
Year X
Industry x Year X X
Occupation x Year X X
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Table A.14: Technology And Employment Over the Long Run (1850-2010)–Heterogenous effects by age

A. Full Sample B. Sub-samples

1850–1920 1930–1960 1970–1990

Age (20–29) × Technology Exposure, ηi,t -0.71∗∗∗ -2.24∗∗∗ -0.073 -0.58∗∗
(-3.46) (-4.08) (-0.19) (-2.33)

Age (30–39) × Technology Exposure, ηi,t -0.57∗∗∗ -1.70∗∗∗ -0.098 -0.50∗∗
(-3.41) (-3.28) (-0.31) (-2.44)

Age (40–49) × Technology Exposure, ηi,t -1.10∗∗∗ -2.13∗∗∗ -0.62∗ -1.03∗∗∗
(-6.20) (-4.40) (-1.88) (-4.85)

Observations 6,512 2,232 1,989 2,291
R2 (Within) 0.066 0.074 0.055 0.090
Controls
Age Group X Year FE Y Y Y Y
Lagged Dependent Variable Y Y Y Y
P-val (40–49) - (20–29) 0.015 0.776 0.129 0.002

Note: The table above reports results from regressions of the form

1
k

(
log Yi,a′,t+k − log Yi,a,t

)
= α0 + αt + β(k, a)ηi,t + ρ (log Yi,t − log Yi,t−k) + εi,t

for k = 20 years for Census years spanning from 1850-2010, where we allow the coefficients to vary by age. The dependent variable Yi,a,t tracks employment by workers
in age group a; for example, to compute the 20-year growth rate in employment in 1900 for workers aged 20–29 in occupation i, we compare it to the employment
of 40–49 year old workers in occupation i in 1920. The main variable of interest is ηi,t, our technology exposure measure (normalized to unit standard deviation).
Employment growth rates is in annualized percentage terms. Standard errors are clustered by occupation and corresponding t-stats are shown in parentheses.
Observations are weighted by occupation employment share at time t. Census year 1870 does not show up in the first column of the 20-year subsample regressions
because the 1890 Census records no longer exist.
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